Loading…
Use of Micronization and Complex Coacervation to Preserve Antioxidant Properties of Flavonoids
The plant flavonoids taxifolin and rutin are among the best known and best studied antioxidants. In addition to their antioxidant properties, other pharmacobiological properties have been established for these substances. At the same time, taxifolin and rutin are chemically labile. They are prone to...
Saved in:
Published in: | International journal of food science 2023, Vol.2023, p.1-13 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The plant flavonoids taxifolin and rutin are among the best known and best studied antioxidants. In addition to their antioxidant properties, other pharmacobiological properties have been established for these substances. At the same time, taxifolin and rutin are chemically labile. They are prone to oxidative degradation and have poor water solubility. Under conditions of their real consumption, all this can lead to a significant reduction or complete loss of bioactivity of these flavonoids. Flavonoid modification and encapsulation techniques can be used to overcome these barrier factors. The use of micronization process for taxifolin and rutin allows changing the lipophilicity values of antioxidants. For micronized taxifolin, the log P value is 1.3 (1.12 for the control forms), and for rutin, it was 0.15 (-0.64 for the control forms). The antioxidant activity of micronized flavonoids has increased about 1.16 times compared to control forms. The present study evaluates the possibility of using encapsulation of premyconized flavonoids by complex coacervation, in order to preserve their antioxidant properties. The results of an in vitro digestion study show that the encapsulated forms of antioxidants retain their bioactivity and bioavailability better than their original forms. The bioavailability indices for the encapsulated forms of flavonoids are more than 1.6 times higher than for their original forms. The digested fractions of the encapsulated properties reveal better antioxidant properties than their original forms in in vitro tests evaluating the antioxidant properties on cultures of the protozoan Paramecium caudatum and human neuroblastoma SH-SY5Y cells. Encapsulated rutin indicates the highest activity, 0.64 relative to PMA. Thus, the studies represent the feasibility of using encapsulation to protect flavonoids during digestion and ensure the preservation of their antioxidant properties. |
---|---|
ISSN: | 2356-7015 2314-5765 2314-5765 |
DOI: | 10.1155/2023/9456931 |