Loading…
Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression
Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an expe...
Saved in:
Published in: | Bioengineering & translational medicine 2023-05, Vol.8 (3), p.e10518-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)‐based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA‐based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA‐based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long‐term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses. |
---|---|
ISSN: | 2380-6761 2380-6761 |
DOI: | 10.1002/btm2.10518 |