Loading…

Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression

Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an expe...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering & translational medicine 2023-05, Vol.8 (3), p.e10518-n/a
Main Authors: Zhang, Haoxiang, Chen, Jiaoshun, Hu, Xiaoqing, Bai, Jianwei, Yin, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3
cites cdi_FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3
container_end_page n/a
container_issue 3
container_start_page e10518
container_title Bioengineering & translational medicine
container_volume 8
creator Zhang, Haoxiang
Chen, Jiaoshun
Hu, Xiaoqing
Bai, Jianwei
Yin, Tao
description Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)‐based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA‐based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA‐based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long‐term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses.
doi_str_mv 10.1002/btm2.10518
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74ffbf0006764b93a09b0ae3e14e8452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_74ffbf0006764b93a09b0ae3e14e8452</doaj_id><sourcerecordid>2814254139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXphQdAkbggpAX_TZwTKhWFSkVcytmaOOPFq8QOtgPdp-FV6-0uVcuBk0czn38z_jxV9ZKSd5QQ9r7PEyuRpOpJdcy4IqumbejTB_FRdZrShhBCG8q5Es-rI94y0jAmjqs_Z8NmSRn6EWu8yREMjuMyQqwnyNHd1NGt3eDyts7LFEo2DDjWtkQpL8PW-XUJnLUeU6oHnNEP6HM9gzcRITtTD4vJMNZQ8sFANM6HCVI9x7CO5ZILvgY_HPBumhYf0jLPh9qL6pmFMeHp4Typvl98uj7_srr69vny_OxqZaRiamWxgV4qi4pwSyjloml5JyVKpIQD4x303SAaQKsApDFAiWg62RAhWwqWn1SXe-4QYKPn6CaIWx3A6btEiGsNsTxnRN0Ka3tb_Czmir7jQLqeAHKkApWQrLA-7Fnz0k84mGJIhPER9HHFux96HX5pSqjqRCsL4c2BEMPPBVPWk0u7nwGPYUmaKVqat1Lsmr3-R7oJS_TFq51KMCko74rq7V5lYkgpor2fhhK92yO92yN9t0dF_Orh_PfSv1tTBHQv-O1G3P4HpT9ef2V76C1kZtdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814254139</pqid></control><display><type>article</type><title>Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression</title><source>Wiley-Blackwell Open Access Collection</source><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Zhang, Haoxiang ; Chen, Jiaoshun ; Hu, Xiaoqing ; Bai, Jianwei ; Yin, Tao</creator><creatorcontrib>Zhang, Haoxiang ; Chen, Jiaoshun ; Hu, Xiaoqing ; Bai, Jianwei ; Yin, Tao</creatorcontrib><description>Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)‐based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA‐based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA‐based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long‐term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses.</description><identifier>ISSN: 2380-6761</identifier><identifier>EISSN: 2380-6761</identifier><identifier>DOI: 10.1002/btm2.10518</identifier><identifier>PMID: 37206224</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Biocompatibility ; Biomechanics ; Biotechnology industry ; Cell culture ; Collagen ; Curing ; Cytotoxicity ; Extracellular matrix ; extracellular matrix rigidity ; Gelatin ; gelatin methacryloyl ; Heparan sulfate ; Hydrogels ; Immunosuppression ; In vitro methods and tests ; In vivo methods and tests ; Light ; Lymphocytes ; Mechanical properties ; Medical prognosis ; Metastasis ; Morphology ; Mutation ; Pancreatic cancer ; Physical properties ; Rheology ; Rigidity ; Stiffness ; Stresses ; Toxicity ; tumor immunosuppression ; Tumors</subject><ispartof>Bioengineering &amp; translational medicine, 2023-05, Vol.8 (3), p.e10518-n/a</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.</rights><rights>2023 The Authors. Bioengineering &amp; Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3</citedby><cites>FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3</cites><orcidid>0000-0002-6302-0901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2814254139/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2814254139?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37206224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Haoxiang</creatorcontrib><creatorcontrib>Chen, Jiaoshun</creatorcontrib><creatorcontrib>Hu, Xiaoqing</creatorcontrib><creatorcontrib>Bai, Jianwei</creatorcontrib><creatorcontrib>Yin, Tao</creatorcontrib><title>Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression</title><title>Bioengineering &amp; translational medicine</title><addtitle>Bioeng Transl Med</addtitle><description>Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)‐based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA‐based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA‐based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long‐term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses.</description><subject>Biocompatibility</subject><subject>Biomechanics</subject><subject>Biotechnology industry</subject><subject>Cell culture</subject><subject>Collagen</subject><subject>Curing</subject><subject>Cytotoxicity</subject><subject>Extracellular matrix</subject><subject>extracellular matrix rigidity</subject><subject>Gelatin</subject><subject>gelatin methacryloyl</subject><subject>Heparan sulfate</subject><subject>Hydrogels</subject><subject>Immunosuppression</subject><subject>In vitro methods and tests</subject><subject>In vivo methods and tests</subject><subject>Light</subject><subject>Lymphocytes</subject><subject>Mechanical properties</subject><subject>Medical prognosis</subject><subject>Metastasis</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Pancreatic cancer</subject><subject>Physical properties</subject><subject>Rheology</subject><subject>Rigidity</subject><subject>Stiffness</subject><subject>Stresses</subject><subject>Toxicity</subject><subject>tumor immunosuppression</subject><subject>Tumors</subject><issn>2380-6761</issn><issn>2380-6761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXphQdAkbggpAX_TZwTKhWFSkVcytmaOOPFq8QOtgPdp-FV6-0uVcuBk0czn38z_jxV9ZKSd5QQ9r7PEyuRpOpJdcy4IqumbejTB_FRdZrShhBCG8q5Es-rI94y0jAmjqs_Z8NmSRn6EWu8yREMjuMyQqwnyNHd1NGt3eDyts7LFEo2DDjWtkQpL8PW-XUJnLUeU6oHnNEP6HM9gzcRITtTD4vJMNZQ8sFANM6HCVI9x7CO5ZILvgY_HPBumhYf0jLPh9qL6pmFMeHp4Typvl98uj7_srr69vny_OxqZaRiamWxgV4qi4pwSyjloml5JyVKpIQD4x303SAaQKsApDFAiWg62RAhWwqWn1SXe-4QYKPn6CaIWx3A6btEiGsNsTxnRN0Ka3tb_Czmir7jQLqeAHKkApWQrLA-7Fnz0k84mGJIhPER9HHFux96HX5pSqjqRCsL4c2BEMPPBVPWk0u7nwGPYUmaKVqat1Lsmr3-R7oJS_TFq51KMCko74rq7V5lYkgpor2fhhK92yO92yN9t0dF_Orh_PfSv1tTBHQv-O1G3P4HpT9ef2V76C1kZtdg</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Zhang, Haoxiang</creator><creator>Chen, Jiaoshun</creator><creator>Hu, Xiaoqing</creator><creator>Bai, Jianwei</creator><creator>Yin, Tao</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6302-0901</orcidid></search><sort><creationdate>202305</creationdate><title>Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression</title><author>Zhang, Haoxiang ; Chen, Jiaoshun ; Hu, Xiaoqing ; Bai, Jianwei ; Yin, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatibility</topic><topic>Biomechanics</topic><topic>Biotechnology industry</topic><topic>Cell culture</topic><topic>Collagen</topic><topic>Curing</topic><topic>Cytotoxicity</topic><topic>Extracellular matrix</topic><topic>extracellular matrix rigidity</topic><topic>Gelatin</topic><topic>gelatin methacryloyl</topic><topic>Heparan sulfate</topic><topic>Hydrogels</topic><topic>Immunosuppression</topic><topic>In vitro methods and tests</topic><topic>In vivo methods and tests</topic><topic>Light</topic><topic>Lymphocytes</topic><topic>Mechanical properties</topic><topic>Medical prognosis</topic><topic>Metastasis</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Pancreatic cancer</topic><topic>Physical properties</topic><topic>Rheology</topic><topic>Rigidity</topic><topic>Stiffness</topic><topic>Stresses</topic><topic>Toxicity</topic><topic>tumor immunosuppression</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haoxiang</creatorcontrib><creatorcontrib>Chen, Jiaoshun</creatorcontrib><creatorcontrib>Hu, Xiaoqing</creatorcontrib><creatorcontrib>Bai, Jianwei</creatorcontrib><creatorcontrib>Yin, Tao</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering &amp; translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haoxiang</au><au>Chen, Jiaoshun</au><au>Hu, Xiaoqing</au><au>Bai, Jianwei</au><au>Yin, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression</atitle><jtitle>Bioengineering &amp; translational medicine</jtitle><addtitle>Bioeng Transl Med</addtitle><date>2023-05</date><risdate>2023</risdate><volume>8</volume><issue>3</issue><spage>e10518</spage><epage>n/a</epage><pages>e10518-n/a</pages><issn>2380-6761</issn><eissn>2380-6761</eissn><abstract>Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)‐based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA‐based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA‐based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long‐term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37206224</pmid><doi>10.1002/btm2.10518</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6302-0901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2380-6761
ispartof Bioengineering & translational medicine, 2023-05, Vol.8 (3), p.e10518-n/a
issn 2380-6761
2380-6761
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_74ffbf0006764b93a09b0ae3e14e8452
source Wiley-Blackwell Open Access Collection; PubMed Central Free; Publicly Available Content Database
subjects Biocompatibility
Biomechanics
Biotechnology industry
Cell culture
Collagen
Curing
Cytotoxicity
Extracellular matrix
extracellular matrix rigidity
Gelatin
gelatin methacryloyl
Heparan sulfate
Hydrogels
Immunosuppression
In vitro methods and tests
In vivo methods and tests
Light
Lymphocytes
Mechanical properties
Medical prognosis
Metastasis
Morphology
Mutation
Pancreatic cancer
Physical properties
Rheology
Rigidity
Stiffness
Stresses
Toxicity
tumor immunosuppression
Tumors
title Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjustable%20extracellular%20matrix%20rigidity%20tumor%20model%20for%20studying%20stiffness%20dependent%20pancreatic%20ductal%20adenocarcinomas%20progression%20and%20tumor%20immunosuppression&rft.jtitle=Bioengineering%20&%20translational%20medicine&rft.au=Zhang,%20Haoxiang&rft.date=2023-05&rft.volume=8&rft.issue=3&rft.spage=e10518&rft.epage=n/a&rft.pages=e10518-n/a&rft.issn=2380-6761&rft.eissn=2380-6761&rft_id=info:doi/10.1002/btm2.10518&rft_dat=%3Cproquest_doaj_%3E2814254139%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814254139&rft_id=info:pmid/37206224&rfr_iscdi=true