Loading…
Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression
Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an expe...
Saved in:
Published in: | Bioengineering & translational medicine 2023-05, Vol.8 (3), p.e10518-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3 |
container_end_page | n/a |
container_issue | 3 |
container_start_page | e10518 |
container_title | Bioengineering & translational medicine |
container_volume | 8 |
creator | Zhang, Haoxiang Chen, Jiaoshun Hu, Xiaoqing Bai, Jianwei Yin, Tao |
description | Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)‐based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA‐based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA‐based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long‐term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses. |
doi_str_mv | 10.1002/btm2.10518 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74ffbf0006764b93a09b0ae3e14e8452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_74ffbf0006764b93a09b0ae3e14e8452</doaj_id><sourcerecordid>2814254139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXphQdAkbggpAX_TZwTKhWFSkVcytmaOOPFq8QOtgPdp-FV6-0uVcuBk0czn38z_jxV9ZKSd5QQ9r7PEyuRpOpJdcy4IqumbejTB_FRdZrShhBCG8q5Es-rI94y0jAmjqs_Z8NmSRn6EWu8yREMjuMyQqwnyNHd1NGt3eDyts7LFEo2DDjWtkQpL8PW-XUJnLUeU6oHnNEP6HM9gzcRITtTD4vJMNZQ8sFANM6HCVI9x7CO5ZILvgY_HPBumhYf0jLPh9qL6pmFMeHp4Typvl98uj7_srr69vny_OxqZaRiamWxgV4qi4pwSyjloml5JyVKpIQD4x303SAaQKsApDFAiWg62RAhWwqWn1SXe-4QYKPn6CaIWx3A6btEiGsNsTxnRN0Ka3tb_Czmir7jQLqeAHKkApWQrLA-7Fnz0k84mGJIhPER9HHFux96HX5pSqjqRCsL4c2BEMPPBVPWk0u7nwGPYUmaKVqat1Lsmr3-R7oJS_TFq51KMCko74rq7V5lYkgpor2fhhK92yO92yN9t0dF_Orh_PfSv1tTBHQv-O1G3P4HpT9ef2V76C1kZtdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814254139</pqid></control><display><type>article</type><title>Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression</title><source>Wiley-Blackwell Open Access Collection</source><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Zhang, Haoxiang ; Chen, Jiaoshun ; Hu, Xiaoqing ; Bai, Jianwei ; Yin, Tao</creator><creatorcontrib>Zhang, Haoxiang ; Chen, Jiaoshun ; Hu, Xiaoqing ; Bai, Jianwei ; Yin, Tao</creatorcontrib><description>Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)‐based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA‐based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA‐based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long‐term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses.</description><identifier>ISSN: 2380-6761</identifier><identifier>EISSN: 2380-6761</identifier><identifier>DOI: 10.1002/btm2.10518</identifier><identifier>PMID: 37206224</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Biocompatibility ; Biomechanics ; Biotechnology industry ; Cell culture ; Collagen ; Curing ; Cytotoxicity ; Extracellular matrix ; extracellular matrix rigidity ; Gelatin ; gelatin methacryloyl ; Heparan sulfate ; Hydrogels ; Immunosuppression ; In vitro methods and tests ; In vivo methods and tests ; Light ; Lymphocytes ; Mechanical properties ; Medical prognosis ; Metastasis ; Morphology ; Mutation ; Pancreatic cancer ; Physical properties ; Rheology ; Rigidity ; Stiffness ; Stresses ; Toxicity ; tumor immunosuppression ; Tumors</subject><ispartof>Bioengineering & translational medicine, 2023-05, Vol.8 (3), p.e10518-n/a</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.</rights><rights>2023 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3</citedby><cites>FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3</cites><orcidid>0000-0002-6302-0901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2814254139/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2814254139?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37206224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Haoxiang</creatorcontrib><creatorcontrib>Chen, Jiaoshun</creatorcontrib><creatorcontrib>Hu, Xiaoqing</creatorcontrib><creatorcontrib>Bai, Jianwei</creatorcontrib><creatorcontrib>Yin, Tao</creatorcontrib><title>Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression</title><title>Bioengineering & translational medicine</title><addtitle>Bioeng Transl Med</addtitle><description>Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)‐based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA‐based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA‐based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long‐term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses.</description><subject>Biocompatibility</subject><subject>Biomechanics</subject><subject>Biotechnology industry</subject><subject>Cell culture</subject><subject>Collagen</subject><subject>Curing</subject><subject>Cytotoxicity</subject><subject>Extracellular matrix</subject><subject>extracellular matrix rigidity</subject><subject>Gelatin</subject><subject>gelatin methacryloyl</subject><subject>Heparan sulfate</subject><subject>Hydrogels</subject><subject>Immunosuppression</subject><subject>In vitro methods and tests</subject><subject>In vivo methods and tests</subject><subject>Light</subject><subject>Lymphocytes</subject><subject>Mechanical properties</subject><subject>Medical prognosis</subject><subject>Metastasis</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Pancreatic cancer</subject><subject>Physical properties</subject><subject>Rheology</subject><subject>Rigidity</subject><subject>Stiffness</subject><subject>Stresses</subject><subject>Toxicity</subject><subject>tumor immunosuppression</subject><subject>Tumors</subject><issn>2380-6761</issn><issn>2380-6761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXphQdAkbggpAX_TZwTKhWFSkVcytmaOOPFq8QOtgPdp-FV6-0uVcuBk0czn38z_jxV9ZKSd5QQ9r7PEyuRpOpJdcy4IqumbejTB_FRdZrShhBCG8q5Es-rI94y0jAmjqs_Z8NmSRn6EWu8yREMjuMyQqwnyNHd1NGt3eDyts7LFEo2DDjWtkQpL8PW-XUJnLUeU6oHnNEP6HM9gzcRITtTD4vJMNZQ8sFANM6HCVI9x7CO5ZILvgY_HPBumhYf0jLPh9qL6pmFMeHp4Typvl98uj7_srr69vny_OxqZaRiamWxgV4qi4pwSyjloml5JyVKpIQD4x303SAaQKsApDFAiWg62RAhWwqWn1SXe-4QYKPn6CaIWx3A6btEiGsNsTxnRN0Ka3tb_Czmir7jQLqeAHKkApWQrLA-7Fnz0k84mGJIhPER9HHFux96HX5pSqjqRCsL4c2BEMPPBVPWk0u7nwGPYUmaKVqat1Lsmr3-R7oJS_TFq51KMCko74rq7V5lYkgpor2fhhK92yO92yN9t0dF_Orh_PfSv1tTBHQv-O1G3P4HpT9ef2V76C1kZtdg</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Zhang, Haoxiang</creator><creator>Chen, Jiaoshun</creator><creator>Hu, Xiaoqing</creator><creator>Bai, Jianwei</creator><creator>Yin, Tao</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6302-0901</orcidid></search><sort><creationdate>202305</creationdate><title>Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression</title><author>Zhang, Haoxiang ; Chen, Jiaoshun ; Hu, Xiaoqing ; Bai, Jianwei ; Yin, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatibility</topic><topic>Biomechanics</topic><topic>Biotechnology industry</topic><topic>Cell culture</topic><topic>Collagen</topic><topic>Curing</topic><topic>Cytotoxicity</topic><topic>Extracellular matrix</topic><topic>extracellular matrix rigidity</topic><topic>Gelatin</topic><topic>gelatin methacryloyl</topic><topic>Heparan sulfate</topic><topic>Hydrogels</topic><topic>Immunosuppression</topic><topic>In vitro methods and tests</topic><topic>In vivo methods and tests</topic><topic>Light</topic><topic>Lymphocytes</topic><topic>Mechanical properties</topic><topic>Medical prognosis</topic><topic>Metastasis</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Pancreatic cancer</topic><topic>Physical properties</topic><topic>Rheology</topic><topic>Rigidity</topic><topic>Stiffness</topic><topic>Stresses</topic><topic>Toxicity</topic><topic>tumor immunosuppression</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haoxiang</creatorcontrib><creatorcontrib>Chen, Jiaoshun</creatorcontrib><creatorcontrib>Hu, Xiaoqing</creatorcontrib><creatorcontrib>Bai, Jianwei</creatorcontrib><creatorcontrib>Yin, Tao</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering & translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haoxiang</au><au>Chen, Jiaoshun</au><au>Hu, Xiaoqing</au><au>Bai, Jianwei</au><au>Yin, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression</atitle><jtitle>Bioengineering & translational medicine</jtitle><addtitle>Bioeng Transl Med</addtitle><date>2023-05</date><risdate>2023</risdate><volume>8</volume><issue>3</issue><spage>e10518</spage><epage>n/a</epage><pages>e10518-n/a</pages><issn>2380-6761</issn><eissn>2380-6761</eissn><abstract>Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)‐based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA‐based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA‐based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long‐term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>37206224</pmid><doi>10.1002/btm2.10518</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6302-0901</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-6761 |
ispartof | Bioengineering & translational medicine, 2023-05, Vol.8 (3), p.e10518-n/a |
issn | 2380-6761 2380-6761 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_74ffbf0006764b93a09b0ae3e14e8452 |
source | Wiley-Blackwell Open Access Collection; PubMed Central Free; Publicly Available Content Database |
subjects | Biocompatibility Biomechanics Biotechnology industry Cell culture Collagen Curing Cytotoxicity Extracellular matrix extracellular matrix rigidity Gelatin gelatin methacryloyl Heparan sulfate Hydrogels Immunosuppression In vitro methods and tests In vivo methods and tests Light Lymphocytes Mechanical properties Medical prognosis Metastasis Morphology Mutation Pancreatic cancer Physical properties Rheology Rigidity Stiffness Stresses Toxicity tumor immunosuppression Tumors |
title | Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjustable%20extracellular%20matrix%20rigidity%20tumor%20model%20for%20studying%20stiffness%20dependent%20pancreatic%20ductal%20adenocarcinomas%20progression%20and%20tumor%20immunosuppression&rft.jtitle=Bioengineering%20&%20translational%20medicine&rft.au=Zhang,%20Haoxiang&rft.date=2023-05&rft.volume=8&rft.issue=3&rft.spage=e10518&rft.epage=n/a&rft.pages=e10518-n/a&rft.issn=2380-6761&rft.eissn=2380-6761&rft_id=info:doi/10.1002/btm2.10518&rft_dat=%3Cproquest_doaj_%3E2814254139%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5828-fe6ab58fe803f01134673955e5e103a239ab9d46aef8aa5cca104695604571af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814254139&rft_id=info:pmid/37206224&rfr_iscdi=true |