Loading…

Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort

The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic appro...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) 2024-08, Vol.11 (8), p.858
Main Authors: Greselin, Martina, Lu, Po-Jui, Melie-Garcia, Lester, Ocampo-Pineda, Mario, Galbusera, Riccardo, Cagol, Alessandro, Weigel, Matthias, de Oliveira Siebenborn, Nina, Ruberte, Esther, Benkert, Pascal, Müller, Stefanie, Finkener, Sebastian, Vehoff, Jochen, Disanto, Giulio, Findling, Oliver, Chan, Andrew, Salmen, Anke, Pot, Caroline, Bridel, Claire, Zecca, Chiara, Derfuss, Tobias, Lieb, Johanna M, Diepers, Michael, Wagner, Franca, Vargas, Maria I, Pasquier, Renaud Du, Lalive, Patrice H, Pravatà, Emanuele, Weber, Johannes, Gobbi, Claudio, Leppert, David, Kim, Olaf Chan-Hi, Cattin, Philippe C, Hoepner, Robert, Roth, Patrick, Kappos, Ludwig, Kuhle, Jens, Granziera, Cristina
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 8
container_start_page 858
container_title Bioengineering (Basel)
container_volume 11
creator Greselin, Martina
Lu, Po-Jui
Melie-Garcia, Lester
Ocampo-Pineda, Mario
Galbusera, Riccardo
Cagol, Alessandro
Weigel, Matthias
de Oliveira Siebenborn, Nina
Ruberte, Esther
Benkert, Pascal
Müller, Stefanie
Finkener, Sebastian
Vehoff, Jochen
Disanto, Giulio
Findling, Oliver
Chan, Andrew
Salmen, Anke
Pot, Caroline
Bridel, Claire
Zecca, Chiara
Derfuss, Tobias
Lieb, Johanna M
Diepers, Michael
Wagner, Franca
Vargas, Maria I
Pasquier, Renaud Du
Lalive, Patrice H
Pravatà, Emanuele
Weber, Johannes
Gobbi, Claudio
Leppert, David
Kim, Olaf Chan-Hi
Cattin, Philippe C
Hoepner, Robert
Roth, Patrick
Kappos, Ludwig
Kuhle, Jens
Granziera, Cristina
description The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model developed in this study might well be considered for clinical decision support.
doi_str_mv 10.3390/bioengineering11080858
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_753b7b7b06c042a89d9dbeabe7219d4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807392160</galeid><doaj_id>oai_doaj_org_article_753b7b7b06c042a89d9dbeabe7219d4d</doaj_id><sourcerecordid>A807392160</sourcerecordid><originalsourceid>FETCH-LOGICAL-d358t-a8548238756e03e061e315629c6dfaf213a347576833a5922543931ce736fb273</originalsourceid><addsrcrecordid>eNptkkFv1DAQhSMEolXpX6giceGyxfbYic0FrZYClRZxKHCNJs4k61XWDk4Wqf8ep1uqXVTNwfb4vc9-lrPsirNrAMPe1y6Q75wnis53nDPNtNIvsnMBrFgoUPLl0fwsuxzHLWOMg1CikK-zMzDcGM3VeXa_Cn6KOE6LG79BbxMvX9Pogs_vqNuRn3CaF87n3_b95Iae8jvbUwyjGz_ky_wT0ZAcGP1sXQ5DDGg3-S_sXYMTNbMTD16baNHZfBU2IU5vslct9iNdPo4X2c_PNz9WXxfr719uV8v1ogGlpwVqJbUAXaqCGBArOAFXhTC2aFpsBQcEWaqy0ACojBBKggFuqYSirUUJF9ntgdsE3FZDdDuM91VAVz00QuwqjOlyPVWlgrpMxQrLpEBtGtPUhDWVgptGNon18cAa9vWOmodA2J9AT3e821Rd-FNxDoobKRPh3SMhht97Gqdq50ZLfY-ewn6sgBnDpZCaJenb_6TbsI8-vdWsKjVIqY5UHaYEzrchHWxnaLXUrAQjeDGrrp9RpWpo52zw1LrUPzFcHSd9ivjv58BfGI3H-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097834450</pqid></control><display><type>article</type><title>Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Greselin, Martina ; Lu, Po-Jui ; Melie-Garcia, Lester ; Ocampo-Pineda, Mario ; Galbusera, Riccardo ; Cagol, Alessandro ; Weigel, Matthias ; de Oliveira Siebenborn, Nina ; Ruberte, Esther ; Benkert, Pascal ; Müller, Stefanie ; Finkener, Sebastian ; Vehoff, Jochen ; Disanto, Giulio ; Findling, Oliver ; Chan, Andrew ; Salmen, Anke ; Pot, Caroline ; Bridel, Claire ; Zecca, Chiara ; Derfuss, Tobias ; Lieb, Johanna M ; Diepers, Michael ; Wagner, Franca ; Vargas, Maria I ; Pasquier, Renaud Du ; Lalive, Patrice H ; Pravatà, Emanuele ; Weber, Johannes ; Gobbi, Claudio ; Leppert, David ; Kim, Olaf Chan-Hi ; Cattin, Philippe C ; Hoepner, Robert ; Roth, Patrick ; Kappos, Ludwig ; Kuhle, Jens ; Granziera, Cristina</creator><creatorcontrib>Greselin, Martina ; Lu, Po-Jui ; Melie-Garcia, Lester ; Ocampo-Pineda, Mario ; Galbusera, Riccardo ; Cagol, Alessandro ; Weigel, Matthias ; de Oliveira Siebenborn, Nina ; Ruberte, Esther ; Benkert, Pascal ; Müller, Stefanie ; Finkener, Sebastian ; Vehoff, Jochen ; Disanto, Giulio ; Findling, Oliver ; Chan, Andrew ; Salmen, Anke ; Pot, Caroline ; Bridel, Claire ; Zecca, Chiara ; Derfuss, Tobias ; Lieb, Johanna M ; Diepers, Michael ; Wagner, Franca ; Vargas, Maria I ; Pasquier, Renaud Du ; Lalive, Patrice H ; Pravatà, Emanuele ; Weber, Johannes ; Gobbi, Claudio ; Leppert, David ; Kim, Olaf Chan-Hi ; Cattin, Philippe C ; Hoepner, Robert ; Roth, Patrick ; Kappos, Ludwig ; Kuhle, Jens ; Granziera, Cristina</creatorcontrib><description>The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model developed in this study might well be considered for clinical decision support.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering11080858</identifier><identifier>PMID: 39199815</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>automatic segmentation ; Automation ; Datasets ; Deep learning ; Gadolinium ; gadolinium contrast-enhancing lesions ; Image contrast ; Image enhancement ; Lesions ; Magnetic resonance imaging ; Medical imaging equipment ; Metastasis ; Multiple sclerosis ; Neural networks ; Pharmaceutical industry ; Substantia alba</subject><ispartof>Bioengineering (Basel), 2024-08, Vol.11 (8), p.858</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4910-1414 ; 0000-0003-3434-7283 ; 0000-0002-9407-6473 ; 0000-0002-3092-8737 ; 0000-0001-8785-2713 ; 0000-0001-6172-801X ; 0000-0002-0195-4602 ; 0000-0003-2239-7355 ; 0000-0002-4751-299X ; 0000-0002-8512-6096 ; 0000-0002-9990-3431 ; 0000-0002-1146-3129 ; 0000-0003-4175-5509 ; 0000-0001-6031-6865 ; 0000-0002-0115-7021 ; 0000-0002-5225-2993 ; 0000-0002-7703-0553 ; 0000-0001-6449-0756 ; 0000-0003-4298-4370 ; 0000-0001-7267-7676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3097834450/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3097834450?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39199815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greselin, Martina</creatorcontrib><creatorcontrib>Lu, Po-Jui</creatorcontrib><creatorcontrib>Melie-Garcia, Lester</creatorcontrib><creatorcontrib>Ocampo-Pineda, Mario</creatorcontrib><creatorcontrib>Galbusera, Riccardo</creatorcontrib><creatorcontrib>Cagol, Alessandro</creatorcontrib><creatorcontrib>Weigel, Matthias</creatorcontrib><creatorcontrib>de Oliveira Siebenborn, Nina</creatorcontrib><creatorcontrib>Ruberte, Esther</creatorcontrib><creatorcontrib>Benkert, Pascal</creatorcontrib><creatorcontrib>Müller, Stefanie</creatorcontrib><creatorcontrib>Finkener, Sebastian</creatorcontrib><creatorcontrib>Vehoff, Jochen</creatorcontrib><creatorcontrib>Disanto, Giulio</creatorcontrib><creatorcontrib>Findling, Oliver</creatorcontrib><creatorcontrib>Chan, Andrew</creatorcontrib><creatorcontrib>Salmen, Anke</creatorcontrib><creatorcontrib>Pot, Caroline</creatorcontrib><creatorcontrib>Bridel, Claire</creatorcontrib><creatorcontrib>Zecca, Chiara</creatorcontrib><creatorcontrib>Derfuss, Tobias</creatorcontrib><creatorcontrib>Lieb, Johanna M</creatorcontrib><creatorcontrib>Diepers, Michael</creatorcontrib><creatorcontrib>Wagner, Franca</creatorcontrib><creatorcontrib>Vargas, Maria I</creatorcontrib><creatorcontrib>Pasquier, Renaud Du</creatorcontrib><creatorcontrib>Lalive, Patrice H</creatorcontrib><creatorcontrib>Pravatà, Emanuele</creatorcontrib><creatorcontrib>Weber, Johannes</creatorcontrib><creatorcontrib>Gobbi, Claudio</creatorcontrib><creatorcontrib>Leppert, David</creatorcontrib><creatorcontrib>Kim, Olaf Chan-Hi</creatorcontrib><creatorcontrib>Cattin, Philippe C</creatorcontrib><creatorcontrib>Hoepner, Robert</creatorcontrib><creatorcontrib>Roth, Patrick</creatorcontrib><creatorcontrib>Kappos, Ludwig</creatorcontrib><creatorcontrib>Kuhle, Jens</creatorcontrib><creatorcontrib>Granziera, Cristina</creatorcontrib><title>Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort</title><title>Bioengineering (Basel)</title><addtitle>Bioengineering (Basel)</addtitle><description>The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model developed in this study might well be considered for clinical decision support.</description><subject>automatic segmentation</subject><subject>Automation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Gadolinium</subject><subject>gadolinium contrast-enhancing lesions</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging equipment</subject><subject>Metastasis</subject><subject>Multiple sclerosis</subject><subject>Neural networks</subject><subject>Pharmaceutical industry</subject><subject>Substantia alba</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkFv1DAQhSMEolXpX6giceGyxfbYic0FrZYClRZxKHCNJs4k61XWDk4Wqf8ep1uqXVTNwfb4vc9-lrPsirNrAMPe1y6Q75wnis53nDPNtNIvsnMBrFgoUPLl0fwsuxzHLWOMg1CikK-zMzDcGM3VeXa_Cn6KOE6LG79BbxMvX9Pogs_vqNuRn3CaF87n3_b95Iae8jvbUwyjGz_ky_wT0ZAcGP1sXQ5DDGg3-S_sXYMTNbMTD16baNHZfBU2IU5vslct9iNdPo4X2c_PNz9WXxfr719uV8v1ogGlpwVqJbUAXaqCGBArOAFXhTC2aFpsBQcEWaqy0ACojBBKggFuqYSirUUJF9ntgdsE3FZDdDuM91VAVz00QuwqjOlyPVWlgrpMxQrLpEBtGtPUhDWVgptGNon18cAa9vWOmodA2J9AT3e821Rd-FNxDoobKRPh3SMhht97Gqdq50ZLfY-ewn6sgBnDpZCaJenb_6TbsI8-vdWsKjVIqY5UHaYEzrchHWxnaLXUrAQjeDGrrp9RpWpo52zw1LrUPzFcHSd9ivjv58BfGI3H-A</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Greselin, Martina</creator><creator>Lu, Po-Jui</creator><creator>Melie-Garcia, Lester</creator><creator>Ocampo-Pineda, Mario</creator><creator>Galbusera, Riccardo</creator><creator>Cagol, Alessandro</creator><creator>Weigel, Matthias</creator><creator>de Oliveira Siebenborn, Nina</creator><creator>Ruberte, Esther</creator><creator>Benkert, Pascal</creator><creator>Müller, Stefanie</creator><creator>Finkener, Sebastian</creator><creator>Vehoff, Jochen</creator><creator>Disanto, Giulio</creator><creator>Findling, Oliver</creator><creator>Chan, Andrew</creator><creator>Salmen, Anke</creator><creator>Pot, Caroline</creator><creator>Bridel, Claire</creator><creator>Zecca, Chiara</creator><creator>Derfuss, Tobias</creator><creator>Lieb, Johanna M</creator><creator>Diepers, Michael</creator><creator>Wagner, Franca</creator><creator>Vargas, Maria I</creator><creator>Pasquier, Renaud Du</creator><creator>Lalive, Patrice H</creator><creator>Pravatà, Emanuele</creator><creator>Weber, Johannes</creator><creator>Gobbi, Claudio</creator><creator>Leppert, David</creator><creator>Kim, Olaf Chan-Hi</creator><creator>Cattin, Philippe C</creator><creator>Hoepner, Robert</creator><creator>Roth, Patrick</creator><creator>Kappos, Ludwig</creator><creator>Kuhle, Jens</creator><creator>Granziera, Cristina</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4910-1414</orcidid><orcidid>https://orcid.org/0000-0003-3434-7283</orcidid><orcidid>https://orcid.org/0000-0002-9407-6473</orcidid><orcidid>https://orcid.org/0000-0002-3092-8737</orcidid><orcidid>https://orcid.org/0000-0001-8785-2713</orcidid><orcidid>https://orcid.org/0000-0001-6172-801X</orcidid><orcidid>https://orcid.org/0000-0002-0195-4602</orcidid><orcidid>https://orcid.org/0000-0003-2239-7355</orcidid><orcidid>https://orcid.org/0000-0002-4751-299X</orcidid><orcidid>https://orcid.org/0000-0002-8512-6096</orcidid><orcidid>https://orcid.org/0000-0002-9990-3431</orcidid><orcidid>https://orcid.org/0000-0002-1146-3129</orcidid><orcidid>https://orcid.org/0000-0003-4175-5509</orcidid><orcidid>https://orcid.org/0000-0001-6031-6865</orcidid><orcidid>https://orcid.org/0000-0002-0115-7021</orcidid><orcidid>https://orcid.org/0000-0002-5225-2993</orcidid><orcidid>https://orcid.org/0000-0002-7703-0553</orcidid><orcidid>https://orcid.org/0000-0001-6449-0756</orcidid><orcidid>https://orcid.org/0000-0003-4298-4370</orcidid><orcidid>https://orcid.org/0000-0001-7267-7676</orcidid></search><sort><creationdate>20240801</creationdate><title>Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort</title><author>Greselin, Martina ; Lu, Po-Jui ; Melie-Garcia, Lester ; Ocampo-Pineda, Mario ; Galbusera, Riccardo ; Cagol, Alessandro ; Weigel, Matthias ; de Oliveira Siebenborn, Nina ; Ruberte, Esther ; Benkert, Pascal ; Müller, Stefanie ; Finkener, Sebastian ; Vehoff, Jochen ; Disanto, Giulio ; Findling, Oliver ; Chan, Andrew ; Salmen, Anke ; Pot, Caroline ; Bridel, Claire ; Zecca, Chiara ; Derfuss, Tobias ; Lieb, Johanna M ; Diepers, Michael ; Wagner, Franca ; Vargas, Maria I ; Pasquier, Renaud Du ; Lalive, Patrice H ; Pravatà, Emanuele ; Weber, Johannes ; Gobbi, Claudio ; Leppert, David ; Kim, Olaf Chan-Hi ; Cattin, Philippe C ; Hoepner, Robert ; Roth, Patrick ; Kappos, Ludwig ; Kuhle, Jens ; Granziera, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d358t-a8548238756e03e061e315629c6dfaf213a347576833a5922543931ce736fb273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>automatic segmentation</topic><topic>Automation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Gadolinium</topic><topic>gadolinium contrast-enhancing lesions</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging equipment</topic><topic>Metastasis</topic><topic>Multiple sclerosis</topic><topic>Neural networks</topic><topic>Pharmaceutical industry</topic><topic>Substantia alba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greselin, Martina</creatorcontrib><creatorcontrib>Lu, Po-Jui</creatorcontrib><creatorcontrib>Melie-Garcia, Lester</creatorcontrib><creatorcontrib>Ocampo-Pineda, Mario</creatorcontrib><creatorcontrib>Galbusera, Riccardo</creatorcontrib><creatorcontrib>Cagol, Alessandro</creatorcontrib><creatorcontrib>Weigel, Matthias</creatorcontrib><creatorcontrib>de Oliveira Siebenborn, Nina</creatorcontrib><creatorcontrib>Ruberte, Esther</creatorcontrib><creatorcontrib>Benkert, Pascal</creatorcontrib><creatorcontrib>Müller, Stefanie</creatorcontrib><creatorcontrib>Finkener, Sebastian</creatorcontrib><creatorcontrib>Vehoff, Jochen</creatorcontrib><creatorcontrib>Disanto, Giulio</creatorcontrib><creatorcontrib>Findling, Oliver</creatorcontrib><creatorcontrib>Chan, Andrew</creatorcontrib><creatorcontrib>Salmen, Anke</creatorcontrib><creatorcontrib>Pot, Caroline</creatorcontrib><creatorcontrib>Bridel, Claire</creatorcontrib><creatorcontrib>Zecca, Chiara</creatorcontrib><creatorcontrib>Derfuss, Tobias</creatorcontrib><creatorcontrib>Lieb, Johanna M</creatorcontrib><creatorcontrib>Diepers, Michael</creatorcontrib><creatorcontrib>Wagner, Franca</creatorcontrib><creatorcontrib>Vargas, Maria I</creatorcontrib><creatorcontrib>Pasquier, Renaud Du</creatorcontrib><creatorcontrib>Lalive, Patrice H</creatorcontrib><creatorcontrib>Pravatà, Emanuele</creatorcontrib><creatorcontrib>Weber, Johannes</creatorcontrib><creatorcontrib>Gobbi, Claudio</creatorcontrib><creatorcontrib>Leppert, David</creatorcontrib><creatorcontrib>Kim, Olaf Chan-Hi</creatorcontrib><creatorcontrib>Cattin, Philippe C</creatorcontrib><creatorcontrib>Hoepner, Robert</creatorcontrib><creatorcontrib>Roth, Patrick</creatorcontrib><creatorcontrib>Kappos, Ludwig</creatorcontrib><creatorcontrib>Kuhle, Jens</creatorcontrib><creatorcontrib>Granziera, Cristina</creatorcontrib><collection>PubMed</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greselin, Martina</au><au>Lu, Po-Jui</au><au>Melie-Garcia, Lester</au><au>Ocampo-Pineda, Mario</au><au>Galbusera, Riccardo</au><au>Cagol, Alessandro</au><au>Weigel, Matthias</au><au>de Oliveira Siebenborn, Nina</au><au>Ruberte, Esther</au><au>Benkert, Pascal</au><au>Müller, Stefanie</au><au>Finkener, Sebastian</au><au>Vehoff, Jochen</au><au>Disanto, Giulio</au><au>Findling, Oliver</au><au>Chan, Andrew</au><au>Salmen, Anke</au><au>Pot, Caroline</au><au>Bridel, Claire</au><au>Zecca, Chiara</au><au>Derfuss, Tobias</au><au>Lieb, Johanna M</au><au>Diepers, Michael</au><au>Wagner, Franca</au><au>Vargas, Maria I</au><au>Pasquier, Renaud Du</au><au>Lalive, Patrice H</au><au>Pravatà, Emanuele</au><au>Weber, Johannes</au><au>Gobbi, Claudio</au><au>Leppert, David</au><au>Kim, Olaf Chan-Hi</au><au>Cattin, Philippe C</au><au>Hoepner, Robert</au><au>Roth, Patrick</au><au>Kappos, Ludwig</au><au>Kuhle, Jens</au><au>Granziera, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort</atitle><jtitle>Bioengineering (Basel)</jtitle><addtitle>Bioengineering (Basel)</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>11</volume><issue>8</issue><spage>858</spage><pages>858-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model developed in this study might well be considered for clinical decision support.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39199815</pmid><doi>10.3390/bioengineering11080858</doi><orcidid>https://orcid.org/0000-0002-4910-1414</orcidid><orcidid>https://orcid.org/0000-0003-3434-7283</orcidid><orcidid>https://orcid.org/0000-0002-9407-6473</orcidid><orcidid>https://orcid.org/0000-0002-3092-8737</orcidid><orcidid>https://orcid.org/0000-0001-8785-2713</orcidid><orcidid>https://orcid.org/0000-0001-6172-801X</orcidid><orcidid>https://orcid.org/0000-0002-0195-4602</orcidid><orcidid>https://orcid.org/0000-0003-2239-7355</orcidid><orcidid>https://orcid.org/0000-0002-4751-299X</orcidid><orcidid>https://orcid.org/0000-0002-8512-6096</orcidid><orcidid>https://orcid.org/0000-0002-9990-3431</orcidid><orcidid>https://orcid.org/0000-0002-1146-3129</orcidid><orcidid>https://orcid.org/0000-0003-4175-5509</orcidid><orcidid>https://orcid.org/0000-0001-6031-6865</orcidid><orcidid>https://orcid.org/0000-0002-0115-7021</orcidid><orcidid>https://orcid.org/0000-0002-5225-2993</orcidid><orcidid>https://orcid.org/0000-0002-7703-0553</orcidid><orcidid>https://orcid.org/0000-0001-6449-0756</orcidid><orcidid>https://orcid.org/0000-0003-4298-4370</orcidid><orcidid>https://orcid.org/0000-0001-7267-7676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-5354
ispartof Bioengineering (Basel), 2024-08, Vol.11 (8), p.858
issn 2306-5354
2306-5354
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_753b7b7b06c042a89d9dbeabe7219d4d
source PubMed (Medline); Publicly Available Content Database
subjects automatic segmentation
Automation
Datasets
Deep learning
Gadolinium
gadolinium contrast-enhancing lesions
Image contrast
Image enhancement
Lesions
Magnetic resonance imaging
Medical imaging equipment
Metastasis
Multiple sclerosis
Neural networks
Pharmaceutical industry
Substantia alba
title Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrast-Enhancing%20Lesion%20Segmentation%20in%20Multiple%20Sclerosis:%20A%20Deep%20Learning%20Approach%20Validated%20in%20a%20Multicentric%20Cohort&rft.jtitle=Bioengineering%20(Basel)&rft.au=Greselin,%20Martina&rft.date=2024-08-01&rft.volume=11&rft.issue=8&rft.spage=858&rft.pages=858-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering11080858&rft_dat=%3Cgale_doaj_%3EA807392160%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d358t-a8548238756e03e061e315629c6dfaf213a347576833a5922543931ce736fb273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097834450&rft_id=info:pmid/39199815&rft_galeid=A807392160&rfr_iscdi=true