Loading…
Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort
The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic appro...
Saved in:
Published in: | Bioengineering (Basel) 2024-08, Vol.11 (8), p.858 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 8 |
container_start_page | 858 |
container_title | Bioengineering (Basel) |
container_volume | 11 |
creator | Greselin, Martina Lu, Po-Jui Melie-Garcia, Lester Ocampo-Pineda, Mario Galbusera, Riccardo Cagol, Alessandro Weigel, Matthias de Oliveira Siebenborn, Nina Ruberte, Esther Benkert, Pascal Müller, Stefanie Finkener, Sebastian Vehoff, Jochen Disanto, Giulio Findling, Oliver Chan, Andrew Salmen, Anke Pot, Caroline Bridel, Claire Zecca, Chiara Derfuss, Tobias Lieb, Johanna M Diepers, Michael Wagner, Franca Vargas, Maria I Pasquier, Renaud Du Lalive, Patrice H Pravatà, Emanuele Weber, Johannes Gobbi, Claudio Leppert, David Kim, Olaf Chan-Hi Cattin, Philippe C Hoepner, Robert Roth, Patrick Kappos, Ludwig Kuhle, Jens Granziera, Cristina |
description | The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model developed in this study might well be considered for clinical decision support. |
doi_str_mv | 10.3390/bioengineering11080858 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_753b7b7b06c042a89d9dbeabe7219d4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807392160</galeid><doaj_id>oai_doaj_org_article_753b7b7b06c042a89d9dbeabe7219d4d</doaj_id><sourcerecordid>A807392160</sourcerecordid><originalsourceid>FETCH-LOGICAL-d358t-a8548238756e03e061e315629c6dfaf213a347576833a5922543931ce736fb273</originalsourceid><addsrcrecordid>eNptkkFv1DAQhSMEolXpX6giceGyxfbYic0FrZYClRZxKHCNJs4k61XWDk4Wqf8ep1uqXVTNwfb4vc9-lrPsirNrAMPe1y6Q75wnis53nDPNtNIvsnMBrFgoUPLl0fwsuxzHLWOMg1CikK-zMzDcGM3VeXa_Cn6KOE6LG79BbxMvX9Pogs_vqNuRn3CaF87n3_b95Iae8jvbUwyjGz_ky_wT0ZAcGP1sXQ5DDGg3-S_sXYMTNbMTD16baNHZfBU2IU5vslct9iNdPo4X2c_PNz9WXxfr719uV8v1ogGlpwVqJbUAXaqCGBArOAFXhTC2aFpsBQcEWaqy0ACojBBKggFuqYSirUUJF9ntgdsE3FZDdDuM91VAVz00QuwqjOlyPVWlgrpMxQrLpEBtGtPUhDWVgptGNon18cAa9vWOmodA2J9AT3e821Rd-FNxDoobKRPh3SMhht97Gqdq50ZLfY-ewn6sgBnDpZCaJenb_6TbsI8-vdWsKjVIqY5UHaYEzrchHWxnaLXUrAQjeDGrrp9RpWpo52zw1LrUPzFcHSd9ivjv58BfGI3H-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097834450</pqid></control><display><type>article</type><title>Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Greselin, Martina ; Lu, Po-Jui ; Melie-Garcia, Lester ; Ocampo-Pineda, Mario ; Galbusera, Riccardo ; Cagol, Alessandro ; Weigel, Matthias ; de Oliveira Siebenborn, Nina ; Ruberte, Esther ; Benkert, Pascal ; Müller, Stefanie ; Finkener, Sebastian ; Vehoff, Jochen ; Disanto, Giulio ; Findling, Oliver ; Chan, Andrew ; Salmen, Anke ; Pot, Caroline ; Bridel, Claire ; Zecca, Chiara ; Derfuss, Tobias ; Lieb, Johanna M ; Diepers, Michael ; Wagner, Franca ; Vargas, Maria I ; Pasquier, Renaud Du ; Lalive, Patrice H ; Pravatà, Emanuele ; Weber, Johannes ; Gobbi, Claudio ; Leppert, David ; Kim, Olaf Chan-Hi ; Cattin, Philippe C ; Hoepner, Robert ; Roth, Patrick ; Kappos, Ludwig ; Kuhle, Jens ; Granziera, Cristina</creator><creatorcontrib>Greselin, Martina ; Lu, Po-Jui ; Melie-Garcia, Lester ; Ocampo-Pineda, Mario ; Galbusera, Riccardo ; Cagol, Alessandro ; Weigel, Matthias ; de Oliveira Siebenborn, Nina ; Ruberte, Esther ; Benkert, Pascal ; Müller, Stefanie ; Finkener, Sebastian ; Vehoff, Jochen ; Disanto, Giulio ; Findling, Oliver ; Chan, Andrew ; Salmen, Anke ; Pot, Caroline ; Bridel, Claire ; Zecca, Chiara ; Derfuss, Tobias ; Lieb, Johanna M ; Diepers, Michael ; Wagner, Franca ; Vargas, Maria I ; Pasquier, Renaud Du ; Lalive, Patrice H ; Pravatà, Emanuele ; Weber, Johannes ; Gobbi, Claudio ; Leppert, David ; Kim, Olaf Chan-Hi ; Cattin, Philippe C ; Hoepner, Robert ; Roth, Patrick ; Kappos, Ludwig ; Kuhle, Jens ; Granziera, Cristina</creatorcontrib><description>The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model developed in this study might well be considered for clinical decision support.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering11080858</identifier><identifier>PMID: 39199815</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>automatic segmentation ; Automation ; Datasets ; Deep learning ; Gadolinium ; gadolinium contrast-enhancing lesions ; Image contrast ; Image enhancement ; Lesions ; Magnetic resonance imaging ; Medical imaging equipment ; Metastasis ; Multiple sclerosis ; Neural networks ; Pharmaceutical industry ; Substantia alba</subject><ispartof>Bioengineering (Basel), 2024-08, Vol.11 (8), p.858</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4910-1414 ; 0000-0003-3434-7283 ; 0000-0002-9407-6473 ; 0000-0002-3092-8737 ; 0000-0001-8785-2713 ; 0000-0001-6172-801X ; 0000-0002-0195-4602 ; 0000-0003-2239-7355 ; 0000-0002-4751-299X ; 0000-0002-8512-6096 ; 0000-0002-9990-3431 ; 0000-0002-1146-3129 ; 0000-0003-4175-5509 ; 0000-0001-6031-6865 ; 0000-0002-0115-7021 ; 0000-0002-5225-2993 ; 0000-0002-7703-0553 ; 0000-0001-6449-0756 ; 0000-0003-4298-4370 ; 0000-0001-7267-7676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3097834450/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3097834450?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39199815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greselin, Martina</creatorcontrib><creatorcontrib>Lu, Po-Jui</creatorcontrib><creatorcontrib>Melie-Garcia, Lester</creatorcontrib><creatorcontrib>Ocampo-Pineda, Mario</creatorcontrib><creatorcontrib>Galbusera, Riccardo</creatorcontrib><creatorcontrib>Cagol, Alessandro</creatorcontrib><creatorcontrib>Weigel, Matthias</creatorcontrib><creatorcontrib>de Oliveira Siebenborn, Nina</creatorcontrib><creatorcontrib>Ruberte, Esther</creatorcontrib><creatorcontrib>Benkert, Pascal</creatorcontrib><creatorcontrib>Müller, Stefanie</creatorcontrib><creatorcontrib>Finkener, Sebastian</creatorcontrib><creatorcontrib>Vehoff, Jochen</creatorcontrib><creatorcontrib>Disanto, Giulio</creatorcontrib><creatorcontrib>Findling, Oliver</creatorcontrib><creatorcontrib>Chan, Andrew</creatorcontrib><creatorcontrib>Salmen, Anke</creatorcontrib><creatorcontrib>Pot, Caroline</creatorcontrib><creatorcontrib>Bridel, Claire</creatorcontrib><creatorcontrib>Zecca, Chiara</creatorcontrib><creatorcontrib>Derfuss, Tobias</creatorcontrib><creatorcontrib>Lieb, Johanna M</creatorcontrib><creatorcontrib>Diepers, Michael</creatorcontrib><creatorcontrib>Wagner, Franca</creatorcontrib><creatorcontrib>Vargas, Maria I</creatorcontrib><creatorcontrib>Pasquier, Renaud Du</creatorcontrib><creatorcontrib>Lalive, Patrice H</creatorcontrib><creatorcontrib>Pravatà, Emanuele</creatorcontrib><creatorcontrib>Weber, Johannes</creatorcontrib><creatorcontrib>Gobbi, Claudio</creatorcontrib><creatorcontrib>Leppert, David</creatorcontrib><creatorcontrib>Kim, Olaf Chan-Hi</creatorcontrib><creatorcontrib>Cattin, Philippe C</creatorcontrib><creatorcontrib>Hoepner, Robert</creatorcontrib><creatorcontrib>Roth, Patrick</creatorcontrib><creatorcontrib>Kappos, Ludwig</creatorcontrib><creatorcontrib>Kuhle, Jens</creatorcontrib><creatorcontrib>Granziera, Cristina</creatorcontrib><title>Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort</title><title>Bioengineering (Basel)</title><addtitle>Bioengineering (Basel)</addtitle><description>The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model developed in this study might well be considered for clinical decision support.</description><subject>automatic segmentation</subject><subject>Automation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Gadolinium</subject><subject>gadolinium contrast-enhancing lesions</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging equipment</subject><subject>Metastasis</subject><subject>Multiple sclerosis</subject><subject>Neural networks</subject><subject>Pharmaceutical industry</subject><subject>Substantia alba</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkFv1DAQhSMEolXpX6giceGyxfbYic0FrZYClRZxKHCNJs4k61XWDk4Wqf8ep1uqXVTNwfb4vc9-lrPsirNrAMPe1y6Q75wnis53nDPNtNIvsnMBrFgoUPLl0fwsuxzHLWOMg1CikK-zMzDcGM3VeXa_Cn6KOE6LG79BbxMvX9Pogs_vqNuRn3CaF87n3_b95Iae8jvbUwyjGz_ky_wT0ZAcGP1sXQ5DDGg3-S_sXYMTNbMTD16baNHZfBU2IU5vslct9iNdPo4X2c_PNz9WXxfr719uV8v1ogGlpwVqJbUAXaqCGBArOAFXhTC2aFpsBQcEWaqy0ACojBBKggFuqYSirUUJF9ntgdsE3FZDdDuM91VAVz00QuwqjOlyPVWlgrpMxQrLpEBtGtPUhDWVgptGNon18cAa9vWOmodA2J9AT3e821Rd-FNxDoobKRPh3SMhht97Gqdq50ZLfY-ewn6sgBnDpZCaJenb_6TbsI8-vdWsKjVIqY5UHaYEzrchHWxnaLXUrAQjeDGrrp9RpWpo52zw1LrUPzFcHSd9ivjv58BfGI3H-A</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Greselin, Martina</creator><creator>Lu, Po-Jui</creator><creator>Melie-Garcia, Lester</creator><creator>Ocampo-Pineda, Mario</creator><creator>Galbusera, Riccardo</creator><creator>Cagol, Alessandro</creator><creator>Weigel, Matthias</creator><creator>de Oliveira Siebenborn, Nina</creator><creator>Ruberte, Esther</creator><creator>Benkert, Pascal</creator><creator>Müller, Stefanie</creator><creator>Finkener, Sebastian</creator><creator>Vehoff, Jochen</creator><creator>Disanto, Giulio</creator><creator>Findling, Oliver</creator><creator>Chan, Andrew</creator><creator>Salmen, Anke</creator><creator>Pot, Caroline</creator><creator>Bridel, Claire</creator><creator>Zecca, Chiara</creator><creator>Derfuss, Tobias</creator><creator>Lieb, Johanna M</creator><creator>Diepers, Michael</creator><creator>Wagner, Franca</creator><creator>Vargas, Maria I</creator><creator>Pasquier, Renaud Du</creator><creator>Lalive, Patrice H</creator><creator>Pravatà, Emanuele</creator><creator>Weber, Johannes</creator><creator>Gobbi, Claudio</creator><creator>Leppert, David</creator><creator>Kim, Olaf Chan-Hi</creator><creator>Cattin, Philippe C</creator><creator>Hoepner, Robert</creator><creator>Roth, Patrick</creator><creator>Kappos, Ludwig</creator><creator>Kuhle, Jens</creator><creator>Granziera, Cristina</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4910-1414</orcidid><orcidid>https://orcid.org/0000-0003-3434-7283</orcidid><orcidid>https://orcid.org/0000-0002-9407-6473</orcidid><orcidid>https://orcid.org/0000-0002-3092-8737</orcidid><orcidid>https://orcid.org/0000-0001-8785-2713</orcidid><orcidid>https://orcid.org/0000-0001-6172-801X</orcidid><orcidid>https://orcid.org/0000-0002-0195-4602</orcidid><orcidid>https://orcid.org/0000-0003-2239-7355</orcidid><orcidid>https://orcid.org/0000-0002-4751-299X</orcidid><orcidid>https://orcid.org/0000-0002-8512-6096</orcidid><orcidid>https://orcid.org/0000-0002-9990-3431</orcidid><orcidid>https://orcid.org/0000-0002-1146-3129</orcidid><orcidid>https://orcid.org/0000-0003-4175-5509</orcidid><orcidid>https://orcid.org/0000-0001-6031-6865</orcidid><orcidid>https://orcid.org/0000-0002-0115-7021</orcidid><orcidid>https://orcid.org/0000-0002-5225-2993</orcidid><orcidid>https://orcid.org/0000-0002-7703-0553</orcidid><orcidid>https://orcid.org/0000-0001-6449-0756</orcidid><orcidid>https://orcid.org/0000-0003-4298-4370</orcidid><orcidid>https://orcid.org/0000-0001-7267-7676</orcidid></search><sort><creationdate>20240801</creationdate><title>Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort</title><author>Greselin, Martina ; Lu, Po-Jui ; Melie-Garcia, Lester ; Ocampo-Pineda, Mario ; Galbusera, Riccardo ; Cagol, Alessandro ; Weigel, Matthias ; de Oliveira Siebenborn, Nina ; Ruberte, Esther ; Benkert, Pascal ; Müller, Stefanie ; Finkener, Sebastian ; Vehoff, Jochen ; Disanto, Giulio ; Findling, Oliver ; Chan, Andrew ; Salmen, Anke ; Pot, Caroline ; Bridel, Claire ; Zecca, Chiara ; Derfuss, Tobias ; Lieb, Johanna M ; Diepers, Michael ; Wagner, Franca ; Vargas, Maria I ; Pasquier, Renaud Du ; Lalive, Patrice H ; Pravatà, Emanuele ; Weber, Johannes ; Gobbi, Claudio ; Leppert, David ; Kim, Olaf Chan-Hi ; Cattin, Philippe C ; Hoepner, Robert ; Roth, Patrick ; Kappos, Ludwig ; Kuhle, Jens ; Granziera, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d358t-a8548238756e03e061e315629c6dfaf213a347576833a5922543931ce736fb273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>automatic segmentation</topic><topic>Automation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Gadolinium</topic><topic>gadolinium contrast-enhancing lesions</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging equipment</topic><topic>Metastasis</topic><topic>Multiple sclerosis</topic><topic>Neural networks</topic><topic>Pharmaceutical industry</topic><topic>Substantia alba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greselin, Martina</creatorcontrib><creatorcontrib>Lu, Po-Jui</creatorcontrib><creatorcontrib>Melie-Garcia, Lester</creatorcontrib><creatorcontrib>Ocampo-Pineda, Mario</creatorcontrib><creatorcontrib>Galbusera, Riccardo</creatorcontrib><creatorcontrib>Cagol, Alessandro</creatorcontrib><creatorcontrib>Weigel, Matthias</creatorcontrib><creatorcontrib>de Oliveira Siebenborn, Nina</creatorcontrib><creatorcontrib>Ruberte, Esther</creatorcontrib><creatorcontrib>Benkert, Pascal</creatorcontrib><creatorcontrib>Müller, Stefanie</creatorcontrib><creatorcontrib>Finkener, Sebastian</creatorcontrib><creatorcontrib>Vehoff, Jochen</creatorcontrib><creatorcontrib>Disanto, Giulio</creatorcontrib><creatorcontrib>Findling, Oliver</creatorcontrib><creatorcontrib>Chan, Andrew</creatorcontrib><creatorcontrib>Salmen, Anke</creatorcontrib><creatorcontrib>Pot, Caroline</creatorcontrib><creatorcontrib>Bridel, Claire</creatorcontrib><creatorcontrib>Zecca, Chiara</creatorcontrib><creatorcontrib>Derfuss, Tobias</creatorcontrib><creatorcontrib>Lieb, Johanna M</creatorcontrib><creatorcontrib>Diepers, Michael</creatorcontrib><creatorcontrib>Wagner, Franca</creatorcontrib><creatorcontrib>Vargas, Maria I</creatorcontrib><creatorcontrib>Pasquier, Renaud Du</creatorcontrib><creatorcontrib>Lalive, Patrice H</creatorcontrib><creatorcontrib>Pravatà, Emanuele</creatorcontrib><creatorcontrib>Weber, Johannes</creatorcontrib><creatorcontrib>Gobbi, Claudio</creatorcontrib><creatorcontrib>Leppert, David</creatorcontrib><creatorcontrib>Kim, Olaf Chan-Hi</creatorcontrib><creatorcontrib>Cattin, Philippe C</creatorcontrib><creatorcontrib>Hoepner, Robert</creatorcontrib><creatorcontrib>Roth, Patrick</creatorcontrib><creatorcontrib>Kappos, Ludwig</creatorcontrib><creatorcontrib>Kuhle, Jens</creatorcontrib><creatorcontrib>Granziera, Cristina</creatorcontrib><collection>PubMed</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greselin, Martina</au><au>Lu, Po-Jui</au><au>Melie-Garcia, Lester</au><au>Ocampo-Pineda, Mario</au><au>Galbusera, Riccardo</au><au>Cagol, Alessandro</au><au>Weigel, Matthias</au><au>de Oliveira Siebenborn, Nina</au><au>Ruberte, Esther</au><au>Benkert, Pascal</au><au>Müller, Stefanie</au><au>Finkener, Sebastian</au><au>Vehoff, Jochen</au><au>Disanto, Giulio</au><au>Findling, Oliver</au><au>Chan, Andrew</au><au>Salmen, Anke</au><au>Pot, Caroline</au><au>Bridel, Claire</au><au>Zecca, Chiara</au><au>Derfuss, Tobias</au><au>Lieb, Johanna M</au><au>Diepers, Michael</au><au>Wagner, Franca</au><au>Vargas, Maria I</au><au>Pasquier, Renaud Du</au><au>Lalive, Patrice H</au><au>Pravatà, Emanuele</au><au>Weber, Johannes</au><au>Gobbi, Claudio</au><au>Leppert, David</au><au>Kim, Olaf Chan-Hi</au><au>Cattin, Philippe C</au><au>Hoepner, Robert</au><au>Roth, Patrick</au><au>Kappos, Ludwig</au><au>Kuhle, Jens</au><au>Granziera, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort</atitle><jtitle>Bioengineering (Basel)</jtitle><addtitle>Bioengineering (Basel)</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>11</volume><issue>8</issue><spage>858</spage><pages>858-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model developed in this study might well be considered for clinical decision support.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39199815</pmid><doi>10.3390/bioengineering11080858</doi><orcidid>https://orcid.org/0000-0002-4910-1414</orcidid><orcidid>https://orcid.org/0000-0003-3434-7283</orcidid><orcidid>https://orcid.org/0000-0002-9407-6473</orcidid><orcidid>https://orcid.org/0000-0002-3092-8737</orcidid><orcidid>https://orcid.org/0000-0001-8785-2713</orcidid><orcidid>https://orcid.org/0000-0001-6172-801X</orcidid><orcidid>https://orcid.org/0000-0002-0195-4602</orcidid><orcidid>https://orcid.org/0000-0003-2239-7355</orcidid><orcidid>https://orcid.org/0000-0002-4751-299X</orcidid><orcidid>https://orcid.org/0000-0002-8512-6096</orcidid><orcidid>https://orcid.org/0000-0002-9990-3431</orcidid><orcidid>https://orcid.org/0000-0002-1146-3129</orcidid><orcidid>https://orcid.org/0000-0003-4175-5509</orcidid><orcidid>https://orcid.org/0000-0001-6031-6865</orcidid><orcidid>https://orcid.org/0000-0002-0115-7021</orcidid><orcidid>https://orcid.org/0000-0002-5225-2993</orcidid><orcidid>https://orcid.org/0000-0002-7703-0553</orcidid><orcidid>https://orcid.org/0000-0001-6449-0756</orcidid><orcidid>https://orcid.org/0000-0003-4298-4370</orcidid><orcidid>https://orcid.org/0000-0001-7267-7676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2306-5354 |
ispartof | Bioengineering (Basel), 2024-08, Vol.11 (8), p.858 |
issn | 2306-5354 2306-5354 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_753b7b7b06c042a89d9dbeabe7219d4d |
source | PubMed (Medline); Publicly Available Content Database |
subjects | automatic segmentation Automation Datasets Deep learning Gadolinium gadolinium contrast-enhancing lesions Image contrast Image enhancement Lesions Magnetic resonance imaging Medical imaging equipment Metastasis Multiple sclerosis Neural networks Pharmaceutical industry Substantia alba |
title | Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrast-Enhancing%20Lesion%20Segmentation%20in%20Multiple%20Sclerosis:%20A%20Deep%20Learning%20Approach%20Validated%20in%20a%20Multicentric%20Cohort&rft.jtitle=Bioengineering%20(Basel)&rft.au=Greselin,%20Martina&rft.date=2024-08-01&rft.volume=11&rft.issue=8&rft.spage=858&rft.pages=858-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering11080858&rft_dat=%3Cgale_doaj_%3EA807392160%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d358t-a8548238756e03e061e315629c6dfaf213a347576833a5922543931ce736fb273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097834450&rft_id=info:pmid/39199815&rft_galeid=A807392160&rfr_iscdi=true |