Loading…

Assembling integrable σ-models as affine Gaudin models

A bstract We explain how to obtain new classical integrable field theories by assembling two affine Gaudin models into a single one. We show that the resulting affine Gaudin model depends on a parameter γ in such a way that the limit γ → 0 corresponds to the decoupling limit. Simple conditions ensur...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2019-06, Vol.2019 (6), p.1-88, Article 17
Main Authors: Delduc, F., Lacroix, S., Magro, M., Vicedo, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-a801ed7a05987bb8a0a5cbfa14cfbf5d865bda7070c6d4461686728e531712ae3
cites cdi_FETCH-LOGICAL-c497t-a801ed7a05987bb8a0a5cbfa14cfbf5d865bda7070c6d4461686728e531712ae3
container_end_page 88
container_issue 6
container_start_page 1
container_title The journal of high energy physics
container_volume 2019
creator Delduc, F.
Lacroix, S.
Magro, M.
Vicedo, B.
description A bstract We explain how to obtain new classical integrable field theories by assembling two affine Gaudin models into a single one. We show that the resulting affine Gaudin model depends on a parameter γ in such a way that the limit γ → 0 corresponds to the decoupling limit. Simple conditions ensuring Lorentz invariance are also presented. A first application of this method for σ -models leads to the action announced in [ 1 ] and which couples an arbitrary number N of principal chiral model fields on the same Lie group, each with a Wess-Zumino term. The affine Gaudin model descriptions of various integrable σ -models that can be used as elementary building blocks in the assembling construction are then given. This is in particular used in a second application of the method which consists in assembling N − 1 copies of the principal chiral model each with a Wess-Zumino term and one homogeneous Yang-Baxter deformation of the principal chiral model.
doi_str_mv 10.1007/JHEP06(2019)017
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_754edbc0f9d5448a818eff5afadda71b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_754edbc0f9d5448a818eff5afadda71b</doaj_id><sourcerecordid>2237768115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-a801ed7a05987bb8a0a5cbfa14cfbf5d865bda7070c6d4461686728e531712ae3</originalsourceid><addsrcrecordid>eNp1kU9LAzEQxRdRsFbPXhe86GHtzHazyR5LqW2loAc9h8kmqVu2uzVpBc9-QL-SqSv-OQgDGR7v_Ybwougc4RoB-OB2NrmH_DIFLK4A-UHUQ0iLRGS8OPy1H0cn3q8AkGEBvYiPvDdrVVfNMq6arVk6UrWJ39-SdatN7WMKY23VmHhKO101caefRkeWam_Ovt5-9HgzeRjPksXddD4eLZIyK_g2IQFoNCdgheBKCQJipbKEWWmVZVrkTGniwKHMdZblmIucp8KwIXJMyQz70bzj6pZWcuOqNblX2VIlP4XWLSW5bVXWRnKWGa1KsIVmWSZIoDDWMrKkwwlUgXXVsZ6o_oOajRZyr0EKfMhS8YLBe9F5N6593hm_lat255rwVZmmQ85zgciCa9C5Std674z9xiLIfSuya0XuW5GhlZCALuGDs1ka98P9L_IB-NGNdA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237768115</pqid></control><display><type>article</type><title>Assembling integrable σ-models as affine Gaudin models</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>ProQuest - Publicly Available Content Database</source><creator>Delduc, F. ; Lacroix, S. ; Magro, M. ; Vicedo, B.</creator><creatorcontrib>Delduc, F. ; Lacroix, S. ; Magro, M. ; Vicedo, B.</creatorcontrib><description>A bstract We explain how to obtain new classical integrable field theories by assembling two affine Gaudin models into a single one. We show that the resulting affine Gaudin model depends on a parameter γ in such a way that the limit γ → 0 corresponds to the decoupling limit. Simple conditions ensuring Lorentz invariance are also presented. A first application of this method for σ -models leads to the action announced in [ 1 ] and which couples an arbitrary number N of principal chiral model fields on the same Lie group, each with a Wess-Zumino term. The affine Gaudin model descriptions of various integrable σ -models that can be used as elementary building blocks in the assembling construction are then given. This is in particular used in a second application of the method which consists in assembling N − 1 copies of the principal chiral model each with a Wess-Zumino term and one homogeneous Yang-Baxter deformation of the principal chiral model.</description><identifier>ISSN: 1029-8479</identifier><identifier>ISSN: 1126-6708</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP06(2019)017</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Decoupling ; Deformation mechanisms ; Elementary Particles ; High energy physics ; High Energy Physics - Theory ; Integrable Field Theories ; Lie groups ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Sigma Models ; String Theory</subject><ispartof>The journal of high energy physics, 2019-06, Vol.2019 (6), p.1-88, Article 17</ispartof><rights>The Author(s) 2019</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-a801ed7a05987bb8a0a5cbfa14cfbf5d865bda7070c6d4461686728e531712ae3</citedby><cites>FETCH-LOGICAL-c497t-a801ed7a05987bb8a0a5cbfa14cfbf5d865bda7070c6d4461686728e531712ae3</cites><orcidid>0000-0002-1837-0953 ; 0000-0001-9345-8536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2237768115/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2237768115?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02073528$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delduc, F.</creatorcontrib><creatorcontrib>Lacroix, S.</creatorcontrib><creatorcontrib>Magro, M.</creatorcontrib><creatorcontrib>Vicedo, B.</creatorcontrib><title>Assembling integrable σ-models as affine Gaudin models</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We explain how to obtain new classical integrable field theories by assembling two affine Gaudin models into a single one. We show that the resulting affine Gaudin model depends on a parameter γ in such a way that the limit γ → 0 corresponds to the decoupling limit. Simple conditions ensuring Lorentz invariance are also presented. A first application of this method for σ -models leads to the action announced in [ 1 ] and which couples an arbitrary number N of principal chiral model fields on the same Lie group, each with a Wess-Zumino term. The affine Gaudin model descriptions of various integrable σ -models that can be used as elementary building blocks in the assembling construction are then given. This is in particular used in a second application of the method which consists in assembling N − 1 copies of the principal chiral model each with a Wess-Zumino term and one homogeneous Yang-Baxter deformation of the principal chiral model.</description><subject>Classical and Quantum Gravitation</subject><subject>Decoupling</subject><subject>Deformation mechanisms</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>High Energy Physics - Theory</subject><subject>Integrable Field Theories</subject><subject>Lie groups</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Sigma Models</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1126-6708</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU9LAzEQxRdRsFbPXhe86GHtzHazyR5LqW2loAc9h8kmqVu2uzVpBc9-QL-SqSv-OQgDGR7v_Ybwougc4RoB-OB2NrmH_DIFLK4A-UHUQ0iLRGS8OPy1H0cn3q8AkGEBvYiPvDdrVVfNMq6arVk6UrWJ39-SdatN7WMKY23VmHhKO101caefRkeWam_Ovt5-9HgzeRjPksXddD4eLZIyK_g2IQFoNCdgheBKCQJipbKEWWmVZVrkTGniwKHMdZblmIucp8KwIXJMyQz70bzj6pZWcuOqNblX2VIlP4XWLSW5bVXWRnKWGa1KsIVmWSZIoDDWMrKkwwlUgXXVsZ6o_oOajRZyr0EKfMhS8YLBe9F5N6593hm_lat255rwVZmmQ85zgciCa9C5Std674z9xiLIfSuya0XuW5GhlZCALuGDs1ka98P9L_IB-NGNdA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Delduc, F.</creator><creator>Lacroix, S.</creator><creator>Magro, M.</creator><creator>Vicedo, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1837-0953</orcidid><orcidid>https://orcid.org/0000-0001-9345-8536</orcidid></search><sort><creationdate>20190601</creationdate><title>Assembling integrable σ-models as affine Gaudin models</title><author>Delduc, F. ; Lacroix, S. ; Magro, M. ; Vicedo, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-a801ed7a05987bb8a0a5cbfa14cfbf5d865bda7070c6d4461686728e531712ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Decoupling</topic><topic>Deformation mechanisms</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>High Energy Physics - Theory</topic><topic>Integrable Field Theories</topic><topic>Lie groups</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Sigma Models</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delduc, F.</creatorcontrib><creatorcontrib>Lacroix, S.</creatorcontrib><creatorcontrib>Magro, M.</creatorcontrib><creatorcontrib>Vicedo, B.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delduc, F.</au><au>Lacroix, S.</au><au>Magro, M.</au><au>Vicedo, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembling integrable σ-models as affine Gaudin models</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>2019</volume><issue>6</issue><spage>1</spage><epage>88</epage><pages>1-88</pages><artnum>17</artnum><issn>1029-8479</issn><issn>1126-6708</issn><eissn>1029-8479</eissn><abstract>A bstract We explain how to obtain new classical integrable field theories by assembling two affine Gaudin models into a single one. We show that the resulting affine Gaudin model depends on a parameter γ in such a way that the limit γ → 0 corresponds to the decoupling limit. Simple conditions ensuring Lorentz invariance are also presented. A first application of this method for σ -models leads to the action announced in [ 1 ] and which couples an arbitrary number N of principal chiral model fields on the same Lie group, each with a Wess-Zumino term. The affine Gaudin model descriptions of various integrable σ -models that can be used as elementary building blocks in the assembling construction are then given. This is in particular used in a second application of the method which consists in assembling N − 1 copies of the principal chiral model each with a Wess-Zumino term and one homogeneous Yang-Baxter deformation of the principal chiral model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP06(2019)017</doi><tpages>88</tpages><orcidid>https://orcid.org/0000-0002-1837-0953</orcidid><orcidid>https://orcid.org/0000-0001-9345-8536</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2019-06, Vol.2019 (6), p.1-88, Article 17
issn 1029-8479
1126-6708
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_754edbc0f9d5448a818eff5afadda71b
source Springer Nature - SpringerLink Journals - Fully Open Access ; ProQuest - Publicly Available Content Database
subjects Classical and Quantum Gravitation
Decoupling
Deformation mechanisms
Elementary Particles
High energy physics
High Energy Physics - Theory
Integrable Field Theories
Lie groups
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Sigma Models
String Theory
title Assembling integrable σ-models as affine Gaudin models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembling%20integrable%20%CF%83-models%20as%20affine%20Gaudin%20models&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Delduc,%20F.&rft.date=2019-06-01&rft.volume=2019&rft.issue=6&rft.spage=1&rft.epage=88&rft.pages=1-88&rft.artnum=17&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP06(2019)017&rft_dat=%3Cproquest_doaj_%3E2237768115%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-a801ed7a05987bb8a0a5cbfa14cfbf5d865bda7070c6d4461686728e531712ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2237768115&rft_id=info:pmid/&rfr_iscdi=true