Loading…

CuO nanoparticles for glioma treatment in vitro and in vivo

Glioma is the most prevalent malignant brain tumor in adults. The development of engineered nanomaterials (ENMs) has led to the emergence of innovative therapeutic strategies for gliomas. Therefore, our aim is to investigate the therapeutic effect of CuO nanoparticles (NPs) on glioma and provide dat...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-10, Vol.14 (1), p.23229-11, Article 23229
Main Authors: Tian, Shaohui, Xu, Jianglong, Qiao, Xiaoxia, Zhang, Xuehao, Zhang, Shuai, Zhang, Yuhao, Xu, Can, Wang, Hong, Fang, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glioma is the most prevalent malignant brain tumor in adults. The development of engineered nanomaterials (ENMs) has led to the emergence of innovative therapeutic strategies for gliomas. Therefore, our aim is to investigate the therapeutic effect of CuO nanoparticles (NPs) on glioma and provide data support for future research. The therapeutic effect of CuO NPs on glioma rats was explored through the detection of inflammatory factors, oxidase, pathological sections, immunofluorescence, neurotransmitter, glioma biomarker proteins and genes, and rat behavioral tests. Additionally, the application prospect of CuO NPs was evaluated by treating U87MG human glioma cell line. In this study, it was found that CuO NPs can alleviate the inflammatory reaction in the hippocampus tissue of glioma rats, promote the production of ·OH and lead to the up-regulation of catalase (CAT) and superoxide dismutase (SOD) enzyme activities. Treatment with CuO NPs also inhibited the expression of matrix metalloproteinase-9 (MMP-9) biomarkers in model rats and glioma cells. Moreover, it enhanced the release of neurotransmitters, which subsequently improved spatial recognition and memory ability of glioma rats. In conclusion, CuO NPs is a potential glioma treatment for ENMs, but still needs modification and modification strategies to improve its biocompatibility and targeted delivery.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-74546-7