Loading…
Colossal negative thermal expansion over a wide temperature span in dynamically self-assembled MnCo(Ge,Si)/epoxy composites
The achievement of significant negative thermal expansion (NTE) over a wide temperature range (ΔTNTE) has posed a formidable challenge for NTE materials. In the present study, textured MnCo(Ge,Si)/epoxy composites were prepared by magnetic field-assisted dynamic self-assembly of multi-component Mn0....
Saved in:
Published in: | Materials research letters 2024-04, Vol.12 (4), p.315-323 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The achievement of significant negative thermal expansion (NTE) over a wide temperature range (ΔTNTE) has posed a formidable challenge for NTE materials. In the present study, textured MnCo(Ge,Si)/epoxy composites were prepared by magnetic field-assisted dynamic self-assembly of multi-component Mn0.945Co1.055Ge1-xSix particles. The utilization of multi-component particles with tunable transition temperatures significantly amplifies the temperature range over which the NTE occurs, surpassing the limitations of conventional single-component composites. The textured microstructure enables the extension of lattice-level NTE to reach the macroscopic level, which is manifested by a remarkably large NTE coefficient of −328.7 × 10−6/K between 288.2 and 431.1 K. |
---|---|
ISSN: | 2166-3831 2166-3831 |
DOI: | 10.1080/21663831.2024.2328375 |