Loading…

Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers

Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T′. The low-symmetry 1T′ phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calcul...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-02, Vol.7 (1), p.10843-10843, Article 10843
Main Authors: Li, Wenbin, Li, Ju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c605t-f27cf2517b507fd710d465c5fc9105e7873305af4707f2ea52072e965a1114d73
cites cdi_FETCH-LOGICAL-c605t-f27cf2517b507fd710d465c5fc9105e7873305af4707f2ea52072e965a1114d73
container_end_page 10843
container_issue 1
container_start_page 10843
container_title Nature communications
container_volume 7
creator Li, Wenbin
Li, Ju
description Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T′. The low-symmetry 1T′ phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T′ phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (
doi_str_mv 10.1038/ncomms10843
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_75647ddbbfb548418970bcf32d6d2999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_75647ddbbfb548418970bcf32d6d2999</doaj_id><sourcerecordid>1768556582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-f27cf2517b507fd710d465c5fc9105e7873305af4707f2ea52072e965a1114d73</originalsourceid><addsrcrecordid>eNptkstv1DAQhyMEolXpiTuK4IIEAb8fF6SqolCpUi9wNo492fUqsRc7S7X_PW5Tqi2qLx7PfPrNw9M0rzH6hBFVn6NL01QwUow-a44JYrjDktDnB_ZRc1rKBtVDNVaMvWyOiNBIYE6Om18XkHOC0ZY5uDDvWxt969NkQ2y3630JrrTVnG9S58MEsYQU7djO2VZzro92grk6fHBrO7q0ghg8tFOKabR7yOVV82KwY4HT-_uk-Xnx9cf59-7q-tvl-dlV5wTiczcQ6QbCsew5koOXGHkmuOOD0xhxkEpSirgdmKxhApYTJAlowS3GmHlJT5rLRdcnuzHbHCab9ybZYO4cKa-MzbXHEYzkgknv-37oOVMMKy1R7wZKvPBEa121vixa210_gXcQa7_jI9HHkRjWZpX-GCYlQppVgbeLQKpjNaUOFtzapRjBzQYTTqlUFXp_nyWn3zsos5lCcTCONkLaFYOlUJwLrkhF3_2HbtIu14-4o6TgTPPbsj8slMuplAzDQ8UYmdttMQfbUuk3h00-sP92owIfF6DUUFxBPkj6hN5fTFPK7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767654959</pqid></control><display><type>article</type><title>Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Wenbin ; Li, Ju</creator><creatorcontrib>Li, Wenbin ; Li, Ju ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><description>Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T′. The low-symmetry 1T′ phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T′ phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (&lt;0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T′ structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics. The atoms in two-dimensional transition-metal dichalcogenides can arrange into a number of different structures, or polymorphs. Here, the authors use first-principles calculations to show that one such polymorph, 1T', can exhibit a large mechanical response to external applied strain.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms10843</identifier><identifier>PMID: 26906152</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/119/1000/1018 ; 639/925 ; Chalcogenides ; condensed matter ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Ferroelasticity ; First principles ; Genetic transformation ; Humanities and Social Sciences ; Laboratories ; Martensitic transformations ; materials science ; Mathematical analysis ; Mechanical stimuli ; Metals ; Monolayers ; multidisciplinary ; nanotechnology ; Organic chemistry ; Phase transitions ; physical sciences ; Physics ; Science ; Science (multidisciplinary) ; Shape memory ; Strain ; Switching ; Symmetry ; Transition metal compounds</subject><ispartof>Nature communications, 2016-02, Vol.7 (1), p.10843-10843, Article 10843</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-f27cf2517b507fd710d465c5fc9105e7873305af4707f2ea52072e965a1114d73</citedby><cites>FETCH-LOGICAL-c605t-f27cf2517b507fd710d465c5fc9105e7873305af4707f2ea52072e965a1114d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1767654959/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1767654959?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26906152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1253378$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wenbin</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><title>Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T′. The low-symmetry 1T′ phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T′ phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (&lt;0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T′ structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics. The atoms in two-dimensional transition-metal dichalcogenides can arrange into a number of different structures, or polymorphs. Here, the authors use first-principles calculations to show that one such polymorph, 1T', can exhibit a large mechanical response to external applied strain.</description><subject>119/118</subject><subject>639/301/119/1000/1018</subject><subject>639/925</subject><subject>Chalcogenides</subject><subject>condensed matter</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Ferroelasticity</subject><subject>First principles</subject><subject>Genetic transformation</subject><subject>Humanities and Social Sciences</subject><subject>Laboratories</subject><subject>Martensitic transformations</subject><subject>materials science</subject><subject>Mathematical analysis</subject><subject>Mechanical stimuli</subject><subject>Metals</subject><subject>Monolayers</subject><subject>multidisciplinary</subject><subject>nanotechnology</subject><subject>Organic chemistry</subject><subject>Phase transitions</subject><subject>physical sciences</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shape memory</subject><subject>Strain</subject><subject>Switching</subject><subject>Symmetry</subject><subject>Transition metal compounds</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstv1DAQhyMEolXpiTuK4IIEAb8fF6SqolCpUi9wNo492fUqsRc7S7X_PW5Tqi2qLx7PfPrNw9M0rzH6hBFVn6NL01QwUow-a44JYrjDktDnB_ZRc1rKBtVDNVaMvWyOiNBIYE6Om18XkHOC0ZY5uDDvWxt969NkQ2y3630JrrTVnG9S58MEsYQU7djO2VZzro92grk6fHBrO7q0ghg8tFOKabR7yOVV82KwY4HT-_uk-Xnx9cf59-7q-tvl-dlV5wTiczcQ6QbCsew5koOXGHkmuOOD0xhxkEpSirgdmKxhApYTJAlowS3GmHlJT5rLRdcnuzHbHCab9ybZYO4cKa-MzbXHEYzkgknv-37oOVMMKy1R7wZKvPBEa121vixa210_gXcQa7_jI9HHkRjWZpX-GCYlQppVgbeLQKpjNaUOFtzapRjBzQYTTqlUFXp_nyWn3zsos5lCcTCONkLaFYOlUJwLrkhF3_2HbtIu14-4o6TgTPPbsj8slMuplAzDQ8UYmdttMQfbUuk3h00-sP92owIfF6DUUFxBPkj6hN5fTFPK7A</recordid><startdate>20160224</startdate><enddate>20160224</enddate><creator>Li, Wenbin</creator><creator>Li, Ju</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160224</creationdate><title>Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers</title><author>Li, Wenbin ; Li, Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-f27cf2517b507fd710d465c5fc9105e7873305af4707f2ea52072e965a1114d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>119/118</topic><topic>639/301/119/1000/1018</topic><topic>639/925</topic><topic>Chalcogenides</topic><topic>condensed matter</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Ferroelasticity</topic><topic>First principles</topic><topic>Genetic transformation</topic><topic>Humanities and Social Sciences</topic><topic>Laboratories</topic><topic>Martensitic transformations</topic><topic>materials science</topic><topic>Mathematical analysis</topic><topic>Mechanical stimuli</topic><topic>Metals</topic><topic>Monolayers</topic><topic>multidisciplinary</topic><topic>nanotechnology</topic><topic>Organic chemistry</topic><topic>Phase transitions</topic><topic>physical sciences</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shape memory</topic><topic>Strain</topic><topic>Switching</topic><topic>Symmetry</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenbin</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenbin</au><au>Li, Ju</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-02-24</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>10843</spage><epage>10843</epage><pages>10843-10843</pages><artnum>10843</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T′. The low-symmetry 1T′ phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T′ phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (&lt;0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T′ structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics. The atoms in two-dimensional transition-metal dichalcogenides can arrange into a number of different structures, or polymorphs. Here, the authors use first-principles calculations to show that one such polymorph, 1T', can exhibit a large mechanical response to external applied strain.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26906152</pmid><doi>10.1038/ncomms10843</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2016-02, Vol.7 (1), p.10843-10843, Article 10843
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_75647ddbbfb548418970bcf32d6d2999
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
639/301/119/1000/1018
639/925
Chalcogenides
condensed matter
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Ferroelasticity
First principles
Genetic transformation
Humanities and Social Sciences
Laboratories
Martensitic transformations
materials science
Mathematical analysis
Mechanical stimuli
Metals
Monolayers
multidisciplinary
nanotechnology
Organic chemistry
Phase transitions
physical sciences
Physics
Science
Science (multidisciplinary)
Shape memory
Strain
Switching
Symmetry
Transition metal compounds
title Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelasticity%20and%20domain%20physics%20in%20two-dimensional%20transition%20metal%20dichalcogenide%20monolayers&rft.jtitle=Nature%20communications&rft.au=Li,%20Wenbin&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2016-02-24&rft.volume=7&rft.issue=1&rft.spage=10843&rft.epage=10843&rft.pages=10843-10843&rft.artnum=10843&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms10843&rft_dat=%3Cproquest_doaj_%3E1768556582%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c605t-f27cf2517b507fd710d465c5fc9105e7873305af4707f2ea52072e965a1114d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1767654959&rft_id=info:pmid/26906152&rfr_iscdi=true