Loading…

Effect of Drought on Photosynthesis of Trees and Shrubs in Habitat Corridors

Drought and high evapotranspiration demands can jeopardise trees and shrubs in windbreaks and habitat corridors, where they are more exposed to the effects of extreme weather than in the forest. This study utilised chlorophyll fluorescence to assess how the leaf-level physiological processes of 13 w...

Full description

Saved in:
Bibliographic Details
Published in:Forests 2023-08, Vol.14 (8), p.1521
Main Authors: Urban, Josef, Matoušková, Marie, Robb, William, Jelínek, Boleslav, Úradníček, Luboš
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drought and high evapotranspiration demands can jeopardise trees and shrubs in windbreaks and habitat corridors, where they are more exposed to the effects of extreme weather than in the forest. This study utilised chlorophyll fluorescence to assess how the leaf-level physiological processes of 13 woody species typically planted in Czech habitat corridors responded to the effects of naturally occurring drought and their ability to recover after rain. Linear electron flow (LEF) responded only weakly to the drought, indicating high levels of photorespiration. Trees and shrubs increased the proportion of energy which was dissipated in a harmless way (ΦNPQ) during drought and decreased the proportion of energy dissipated through non-regulated processes (ΦNO). In this way, they reduced processes potentially leading to the production of reactive oxygen species. All species except Tilia cordata Mill. maintained high ΦNPQ even after its release from drought. Tilia cordata was potentially the most susceptible tree to drought due to its low LEF and high ΦNO. The most drought-resistant tree species appeared to be Acer campestre L. and shrubs such as Prunus spinosa L., Viburnum lantana L, and Crataegus monogyna L. These shrubs may be planted at the sunny edges of habitat corridors. The woody species identified as resistant to drought in habitat corridors may also be considered resistant in a warming climate or suitable for planting in the urban environment which is generally warmer and drier than in a forest.
ISSN:1999-4907
1999-4907
DOI:10.3390/f14081521