Loading…
N-glycosylation acts as a switch for FGFR1 trafficking between the plasma membrane and nuclear envelope
Fibroblast growth factor receptor 1 (FGFR1) is a heavily N-glycosylated cell surface receptor tyrosine kinase that transmits signals across the plasma membrane, in response to fibroblast growth factors (FGFs). Balanced FGF/FGFR1 signaling is crucial for the development and homeostasis of the human b...
Saved in:
Published in: | Cell communication and signaling 2023-07, Vol.21 (1), p.177-177, Article 177 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-77938ccd1e368fb10378e5d17190dc4dd94f28e2bbd3587b82e9b2bbfec726e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-77938ccd1e368fb10378e5d17190dc4dd94f28e2bbd3587b82e9b2bbfec726e23 |
container_end_page | 177 |
container_issue | 1 |
container_start_page | 177 |
container_title | Cell communication and signaling |
container_volume | 21 |
creator | Gregorczyk, Paulina Porębska, Natalia Żukowska, Dominika Chorążewska, Aleksandra Gędaj, Aleksandra Malinowska, Agata Otlewski, Jacek Zakrzewska, Małgorzata Opaliński, Łukasz |
description | Fibroblast growth factor receptor 1 (FGFR1) is a heavily N-glycosylated cell surface receptor tyrosine kinase that transmits signals across the plasma membrane, in response to fibroblast growth factors (FGFs). Balanced FGF/FGFR1 signaling is crucial for the development and homeostasis of the human body, and aberrant FGFR1 is frequently observed in various cancers. In addition to its predominant localization to the plasma membrane, FGFR1 has also been detected inside cells, mainly in the nuclear lumen, where it modulates gene expression. However, the exact mechanism of FGFR1 nuclear transport is still unknown. In this study, we generated a glycosylation-free mutant of FGFR1, FGFR1.GF, and demonstrated that it is localized primarily to the nuclear envelope. We show that reintroducing N-glycans into the D3 domain cannot redirect FGFR1 to the plasma membrane or exclude the receptor from the nuclear envelope. Reestablishment of D2 domain N-glycans largely inhibits FGFR1 accumulation in the nuclear envelope, but the receptor continues to accumulate inside the cell, mainly in the ER. Only the simultaneous presence of N-glycans of the D2 and D3 domains of FGFR1 promotes efficient transport of FGFR1 to the plasma membrane. We demonstrate that while disturbed FGFR1 folding results in partial FGFR1 accumulation in the ER, impaired FGFR1 secretion drives FGFR1 trafficking to the nuclear envelope. Intracellular FGFR1.GF displays a high level of autoactivation, suggesting the presence of nuclear FGFR1 signaling, which is independent of FGF. Using mass spectrometry and proximity ligation assay, we identified novel binding partners of the nuclear envelope-localized FGFR1, providing insights into its cellular functions. Collectively, our data define N-glycosylation of FGFR1 as an important regulator of FGFR1 kinase activity and, most importantly, as a switchable signal for FGFR1 trafficking between the nuclear envelope and plasma membrane, which, due to spatial restrictions, shapes FGFR1 interactome and cellular function. Video Abstract. |
doi_str_mv | 10.1186/s12964-023-01203-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_757f24d6456f48bca10c96606101e147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_757f24d6456f48bca10c96606101e147</doaj_id><sourcerecordid>2841020993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-77938ccd1e368fb10378e5d17190dc4dd94f28e2bbd3587b82e9b2bbfec726e23</originalsourceid><addsrcrecordid>eNpdkltrFDEcxQdRbK1-AR8k4IsvU3ObXJ5EitsWioIo-BYyyT-zs84kazLbst_etFtLKwRyO_lxcjhN85bgU0KU-FgI1YK3mLIWE4pZy541x4RL1SpCfj1_tD5qXpWywZjyjsuXzRGTXGEs6XEzfG2Hae9S2U92GVNE1i0F2TpQuRkXt0YhZbQ6X30naMk2hNH9HuOAelhuACJa1oC2ky2zRTPMfbYRkI0exZ2bwGYE8RqmtIXXzYtgpwJv7ueT5ufqy4-zi_bq2_nl2eer1nEtl1ZKzZRzngATKvQEM6mg80QSjb3j3mseqALa9551SvaKgu7rLoCTVABlJ83lgeuT3ZhtHmeb9ybZ0dwdpDwYm5exmjOyk4FyL3gnAle9swQ7LQQWBBOo0VXWpwNru-tn8A5iTWB6An16E8e1GdK1qbYFFUxVwod7Qk5_dlAWM4_FwTTVmNKuGKo4wRRrzar0_X_STdrlWLOqqo5ioRjVVUUPKpdTKRnCgxuCzW0pzKEUppbC3JXC3KLfPf7Hw5N_LWB_AWKBsnQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852068329</pqid></control><display><type>article</type><title>N-glycosylation acts as a switch for FGFR1 trafficking between the plasma membrane and nuclear envelope</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Gregorczyk, Paulina ; Porębska, Natalia ; Żukowska, Dominika ; Chorążewska, Aleksandra ; Gędaj, Aleksandra ; Malinowska, Agata ; Otlewski, Jacek ; Zakrzewska, Małgorzata ; Opaliński, Łukasz</creator><creatorcontrib>Gregorczyk, Paulina ; Porębska, Natalia ; Żukowska, Dominika ; Chorążewska, Aleksandra ; Gędaj, Aleksandra ; Malinowska, Agata ; Otlewski, Jacek ; Zakrzewska, Małgorzata ; Opaliński, Łukasz</creatorcontrib><description>Fibroblast growth factor receptor 1 (FGFR1) is a heavily N-glycosylated cell surface receptor tyrosine kinase that transmits signals across the plasma membrane, in response to fibroblast growth factors (FGFs). Balanced FGF/FGFR1 signaling is crucial for the development and homeostasis of the human body, and aberrant FGFR1 is frequently observed in various cancers. In addition to its predominant localization to the plasma membrane, FGFR1 has also been detected inside cells, mainly in the nuclear lumen, where it modulates gene expression. However, the exact mechanism of FGFR1 nuclear transport is still unknown. In this study, we generated a glycosylation-free mutant of FGFR1, FGFR1.GF, and demonstrated that it is localized primarily to the nuclear envelope. We show that reintroducing N-glycans into the D3 domain cannot redirect FGFR1 to the plasma membrane or exclude the receptor from the nuclear envelope. Reestablishment of D2 domain N-glycans largely inhibits FGFR1 accumulation in the nuclear envelope, but the receptor continues to accumulate inside the cell, mainly in the ER. Only the simultaneous presence of N-glycans of the D2 and D3 domains of FGFR1 promotes efficient transport of FGFR1 to the plasma membrane. We demonstrate that while disturbed FGFR1 folding results in partial FGFR1 accumulation in the ER, impaired FGFR1 secretion drives FGFR1 trafficking to the nuclear envelope. Intracellular FGFR1.GF displays a high level of autoactivation, suggesting the presence of nuclear FGFR1 signaling, which is independent of FGF. Using mass spectrometry and proximity ligation assay, we identified novel binding partners of the nuclear envelope-localized FGFR1, providing insights into its cellular functions. Collectively, our data define N-glycosylation of FGFR1 as an important regulator of FGFR1 kinase activity and, most importantly, as a switchable signal for FGFR1 trafficking between the nuclear envelope and plasma membrane, which, due to spatial restrictions, shapes FGFR1 interactome and cellular function. Video Abstract.</description><identifier>ISSN: 1478-811X</identifier><identifier>EISSN: 1478-811X</identifier><identifier>DOI: 10.1186/s12964-023-01203-3</identifier><identifier>PMID: 37480072</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Antibodies ; Brief Report ; Cancer ; Cell Membrane ; Cell surface ; Cell surface receptors ; Cells ; Experiments ; FGFR1 ; Fibroblast growth factor receptor 1 ; Fibroblast Growth Factors ; Fibroblasts ; Gene expression ; Glycosylation ; Growth factors ; Homeostasis ; Humans ; Kinases ; Laboratories ; Localization ; Mass spectrometry ; Mass spectroscopy ; Membrane trafficking ; Mutagenesis ; N-glycans ; Nuclear Envelope ; Nuclear transport ; Nucleus ; Peptides ; Polysaccharides ; Protein-tyrosine kinase receptors ; Proteins ; Receptor, Fibroblast Growth Factor, Type 1 ; RNA polymerase ; Scientific imaging ; Signal transduction ; Signaling ; Trafficking</subject><ispartof>Cell communication and signaling, 2023-07, Vol.21 (1), p.177-177, Article 177</ispartof><rights>2023. The Author(s).</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-77938ccd1e368fb10378e5d17190dc4dd94f28e2bbd3587b82e9b2bbfec726e23</citedby><cites>FETCH-LOGICAL-c497t-77938ccd1e368fb10378e5d17190dc4dd94f28e2bbd3587b82e9b2bbfec726e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362638/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2852068329?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37480072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gregorczyk, Paulina</creatorcontrib><creatorcontrib>Porębska, Natalia</creatorcontrib><creatorcontrib>Żukowska, Dominika</creatorcontrib><creatorcontrib>Chorążewska, Aleksandra</creatorcontrib><creatorcontrib>Gędaj, Aleksandra</creatorcontrib><creatorcontrib>Malinowska, Agata</creatorcontrib><creatorcontrib>Otlewski, Jacek</creatorcontrib><creatorcontrib>Zakrzewska, Małgorzata</creatorcontrib><creatorcontrib>Opaliński, Łukasz</creatorcontrib><title>N-glycosylation acts as a switch for FGFR1 trafficking between the plasma membrane and nuclear envelope</title><title>Cell communication and signaling</title><addtitle>Cell Commun Signal</addtitle><description>Fibroblast growth factor receptor 1 (FGFR1) is a heavily N-glycosylated cell surface receptor tyrosine kinase that transmits signals across the plasma membrane, in response to fibroblast growth factors (FGFs). Balanced FGF/FGFR1 signaling is crucial for the development and homeostasis of the human body, and aberrant FGFR1 is frequently observed in various cancers. In addition to its predominant localization to the plasma membrane, FGFR1 has also been detected inside cells, mainly in the nuclear lumen, where it modulates gene expression. However, the exact mechanism of FGFR1 nuclear transport is still unknown. In this study, we generated a glycosylation-free mutant of FGFR1, FGFR1.GF, and demonstrated that it is localized primarily to the nuclear envelope. We show that reintroducing N-glycans into the D3 domain cannot redirect FGFR1 to the plasma membrane or exclude the receptor from the nuclear envelope. Reestablishment of D2 domain N-glycans largely inhibits FGFR1 accumulation in the nuclear envelope, but the receptor continues to accumulate inside the cell, mainly in the ER. Only the simultaneous presence of N-glycans of the D2 and D3 domains of FGFR1 promotes efficient transport of FGFR1 to the plasma membrane. We demonstrate that while disturbed FGFR1 folding results in partial FGFR1 accumulation in the ER, impaired FGFR1 secretion drives FGFR1 trafficking to the nuclear envelope. Intracellular FGFR1.GF displays a high level of autoactivation, suggesting the presence of nuclear FGFR1 signaling, which is independent of FGF. Using mass spectrometry and proximity ligation assay, we identified novel binding partners of the nuclear envelope-localized FGFR1, providing insights into its cellular functions. Collectively, our data define N-glycosylation of FGFR1 as an important regulator of FGFR1 kinase activity and, most importantly, as a switchable signal for FGFR1 trafficking between the nuclear envelope and plasma membrane, which, due to spatial restrictions, shapes FGFR1 interactome and cellular function. Video Abstract.</description><subject>Antibodies</subject><subject>Brief Report</subject><subject>Cancer</subject><subject>Cell Membrane</subject><subject>Cell surface</subject><subject>Cell surface receptors</subject><subject>Cells</subject><subject>Experiments</subject><subject>FGFR1</subject><subject>Fibroblast growth factor receptor 1</subject><subject>Fibroblast Growth Factors</subject><subject>Fibroblasts</subject><subject>Gene expression</subject><subject>Glycosylation</subject><subject>Growth factors</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Localization</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Membrane trafficking</subject><subject>Mutagenesis</subject><subject>N-glycans</subject><subject>Nuclear Envelope</subject><subject>Nuclear transport</subject><subject>Nucleus</subject><subject>Peptides</subject><subject>Polysaccharides</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Proteins</subject><subject>Receptor, Fibroblast Growth Factor, Type 1</subject><subject>RNA polymerase</subject><subject>Scientific imaging</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Trafficking</subject><issn>1478-811X</issn><issn>1478-811X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkltrFDEcxQdRbK1-AR8k4IsvU3ObXJ5EitsWioIo-BYyyT-zs84kazLbst_etFtLKwRyO_lxcjhN85bgU0KU-FgI1YK3mLIWE4pZy541x4RL1SpCfj1_tD5qXpWywZjyjsuXzRGTXGEs6XEzfG2Hae9S2U92GVNE1i0F2TpQuRkXt0YhZbQ6X30naMk2hNH9HuOAelhuACJa1oC2ky2zRTPMfbYRkI0exZ2bwGYE8RqmtIXXzYtgpwJv7ueT5ufqy4-zi_bq2_nl2eer1nEtl1ZKzZRzngATKvQEM6mg80QSjb3j3mseqALa9551SvaKgu7rLoCTVABlJ83lgeuT3ZhtHmeb9ybZ0dwdpDwYm5exmjOyk4FyL3gnAle9swQ7LQQWBBOo0VXWpwNru-tn8A5iTWB6An16E8e1GdK1qbYFFUxVwod7Qk5_dlAWM4_FwTTVmNKuGKo4wRRrzar0_X_STdrlWLOqqo5ioRjVVUUPKpdTKRnCgxuCzW0pzKEUppbC3JXC3KLfPf7Hw5N_LWB_AWKBsnQ</recordid><startdate>20230721</startdate><enddate>20230721</enddate><creator>Gregorczyk, Paulina</creator><creator>Porębska, Natalia</creator><creator>Żukowska, Dominika</creator><creator>Chorążewska, Aleksandra</creator><creator>Gędaj, Aleksandra</creator><creator>Malinowska, Agata</creator><creator>Otlewski, Jacek</creator><creator>Zakrzewska, Małgorzata</creator><creator>Opaliński, Łukasz</creator><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230721</creationdate><title>N-glycosylation acts as a switch for FGFR1 trafficking between the plasma membrane and nuclear envelope</title><author>Gregorczyk, Paulina ; Porębska, Natalia ; Żukowska, Dominika ; Chorążewska, Aleksandra ; Gędaj, Aleksandra ; Malinowska, Agata ; Otlewski, Jacek ; Zakrzewska, Małgorzata ; Opaliński, Łukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-77938ccd1e368fb10378e5d17190dc4dd94f28e2bbd3587b82e9b2bbfec726e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibodies</topic><topic>Brief Report</topic><topic>Cancer</topic><topic>Cell Membrane</topic><topic>Cell surface</topic><topic>Cell surface receptors</topic><topic>Cells</topic><topic>Experiments</topic><topic>FGFR1</topic><topic>Fibroblast growth factor receptor 1</topic><topic>Fibroblast Growth Factors</topic><topic>Fibroblasts</topic><topic>Gene expression</topic><topic>Glycosylation</topic><topic>Growth factors</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Localization</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Membrane trafficking</topic><topic>Mutagenesis</topic><topic>N-glycans</topic><topic>Nuclear Envelope</topic><topic>Nuclear transport</topic><topic>Nucleus</topic><topic>Peptides</topic><topic>Polysaccharides</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Proteins</topic><topic>Receptor, Fibroblast Growth Factor, Type 1</topic><topic>RNA polymerase</topic><topic>Scientific imaging</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Trafficking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gregorczyk, Paulina</creatorcontrib><creatorcontrib>Porębska, Natalia</creatorcontrib><creatorcontrib>Żukowska, Dominika</creatorcontrib><creatorcontrib>Chorążewska, Aleksandra</creatorcontrib><creatorcontrib>Gędaj, Aleksandra</creatorcontrib><creatorcontrib>Malinowska, Agata</creatorcontrib><creatorcontrib>Otlewski, Jacek</creatorcontrib><creatorcontrib>Zakrzewska, Małgorzata</creatorcontrib><creatorcontrib>Opaliński, Łukasz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell communication and signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gregorczyk, Paulina</au><au>Porębska, Natalia</au><au>Żukowska, Dominika</au><au>Chorążewska, Aleksandra</au><au>Gędaj, Aleksandra</au><au>Malinowska, Agata</au><au>Otlewski, Jacek</au><au>Zakrzewska, Małgorzata</au><au>Opaliński, Łukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-glycosylation acts as a switch for FGFR1 trafficking between the plasma membrane and nuclear envelope</atitle><jtitle>Cell communication and signaling</jtitle><addtitle>Cell Commun Signal</addtitle><date>2023-07-21</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>177</spage><epage>177</epage><pages>177-177</pages><artnum>177</artnum><issn>1478-811X</issn><eissn>1478-811X</eissn><abstract>Fibroblast growth factor receptor 1 (FGFR1) is a heavily N-glycosylated cell surface receptor tyrosine kinase that transmits signals across the plasma membrane, in response to fibroblast growth factors (FGFs). Balanced FGF/FGFR1 signaling is crucial for the development and homeostasis of the human body, and aberrant FGFR1 is frequently observed in various cancers. In addition to its predominant localization to the plasma membrane, FGFR1 has also been detected inside cells, mainly in the nuclear lumen, where it modulates gene expression. However, the exact mechanism of FGFR1 nuclear transport is still unknown. In this study, we generated a glycosylation-free mutant of FGFR1, FGFR1.GF, and demonstrated that it is localized primarily to the nuclear envelope. We show that reintroducing N-glycans into the D3 domain cannot redirect FGFR1 to the plasma membrane or exclude the receptor from the nuclear envelope. Reestablishment of D2 domain N-glycans largely inhibits FGFR1 accumulation in the nuclear envelope, but the receptor continues to accumulate inside the cell, mainly in the ER. Only the simultaneous presence of N-glycans of the D2 and D3 domains of FGFR1 promotes efficient transport of FGFR1 to the plasma membrane. We demonstrate that while disturbed FGFR1 folding results in partial FGFR1 accumulation in the ER, impaired FGFR1 secretion drives FGFR1 trafficking to the nuclear envelope. Intracellular FGFR1.GF displays a high level of autoactivation, suggesting the presence of nuclear FGFR1 signaling, which is independent of FGF. Using mass spectrometry and proximity ligation assay, we identified novel binding partners of the nuclear envelope-localized FGFR1, providing insights into its cellular functions. Collectively, our data define N-glycosylation of FGFR1 as an important regulator of FGFR1 kinase activity and, most importantly, as a switchable signal for FGFR1 trafficking between the nuclear envelope and plasma membrane, which, due to spatial restrictions, shapes FGFR1 interactome and cellular function. Video Abstract.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>37480072</pmid><doi>10.1186/s12964-023-01203-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-811X |
ispartof | Cell communication and signaling, 2023-07, Vol.21 (1), p.177-177, Article 177 |
issn | 1478-811X 1478-811X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_757f24d6456f48bca10c96606101e147 |
source | Publicly Available Content Database; PubMed Central |
subjects | Antibodies Brief Report Cancer Cell Membrane Cell surface Cell surface receptors Cells Experiments FGFR1 Fibroblast growth factor receptor 1 Fibroblast Growth Factors Fibroblasts Gene expression Glycosylation Growth factors Homeostasis Humans Kinases Laboratories Localization Mass spectrometry Mass spectroscopy Membrane trafficking Mutagenesis N-glycans Nuclear Envelope Nuclear transport Nucleus Peptides Polysaccharides Protein-tyrosine kinase receptors Proteins Receptor, Fibroblast Growth Factor, Type 1 RNA polymerase Scientific imaging Signal transduction Signaling Trafficking |
title | N-glycosylation acts as a switch for FGFR1 trafficking between the plasma membrane and nuclear envelope |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-glycosylation%20acts%20as%20a%20switch%20for%20FGFR1%20trafficking%20between%20the%20plasma%20membrane%20and%20nuclear%20envelope&rft.jtitle=Cell%20communication%20and%20signaling&rft.au=Gregorczyk,%20Paulina&rft.date=2023-07-21&rft.volume=21&rft.issue=1&rft.spage=177&rft.epage=177&rft.pages=177-177&rft.artnum=177&rft.issn=1478-811X&rft.eissn=1478-811X&rft_id=info:doi/10.1186/s12964-023-01203-3&rft_dat=%3Cproquest_doaj_%3E2841020993%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-77938ccd1e368fb10378e5d17190dc4dd94f28e2bbd3587b82e9b2bbfec726e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2852068329&rft_id=info:pmid/37480072&rfr_iscdi=true |