Loading…

Flight Conflict Detection Algorithm Based on Relevance Vector Machine

In response to the problems of slow running speed and high error rates of traditional flight conflict detection algorithms, in this paper, we propose a conflict detection algorithm based on the use of a relevance vector machine. A set of symmetrical historical flight data was used as the training se...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2022-10, Vol.14 (10), p.1992
Main Authors: Wang, Senlin, Nie, Dangmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-26a6004eac9776f9a4787a483d550ee4aa1f18a0dd0a316f3dc89219154ac4523
cites cdi_FETCH-LOGICAL-c364t-26a6004eac9776f9a4787a483d550ee4aa1f18a0dd0a316f3dc89219154ac4523
container_end_page
container_issue 10
container_start_page 1992
container_title Symmetry (Basel)
container_volume 14
creator Wang, Senlin
Nie, Dangmin
description In response to the problems of slow running speed and high error rates of traditional flight conflict detection algorithms, in this paper, we propose a conflict detection algorithm based on the use of a relevance vector machine. A set of symmetrical historical flight data was used as the training set of the model, and we used the SMOTE resampling method to optimize the training set. We obtained relatively symmetrical training data and trained it with the relevance vector machine, improving the kernels through an intelligent algorithm. We tested this method with new symmetrical flight data. The improved algorithm greatly improved the running speed and was able to effectively reduce the missed alarm rate of in-flight conflict detection symmetrically, thus effectively ensuring flight safety.
doi_str_mv 10.3390/sym14101992
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_757f609a7e9b46eeb0ae6851cfc1a0fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_757f609a7e9b46eeb0ae6851cfc1a0fb</doaj_id><sourcerecordid>2728527723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-26a6004eac9776f9a4787a483d550ee4aa1f18a0dd0a316f3dc89219154ac4523</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxYMoWGpPfoGAR4nu_80ea221oAiiXpfpZrZNSbN1sxX67Y1WpHOZ4fHjzeNl2SUlN5wbctvtN1RQQo1hJ9mAEc2L0hhxenSfZ6OuW5N-JJFCkUE2nTX1cpXySWh9U7uU32NCl-rQ5uNmGWKdVpv8Djqs8l56xQa_oHWYf_RQiPkzuFXd4kV25qHpcPS3h9n7bPo2eSyeXh7mk_FT4bgSqWAKFCECwRmtlTcgdKlBlLySkiAKAOppCaSqCHCqPK9caRg1VApwQjI-zOYH3yrA2m5jvYG4twFq-yuEuLQQU-0atFpqr4gBjWYhFOKCAKpSUucdBeIXvdfVwWsbw-cOu2TXYRfbPr5lmpWSac14T10fKBdD10X0_18psT-126Pa-TfVXHOq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728527723</pqid></control><display><type>article</type><title>Flight Conflict Detection Algorithm Based on Relevance Vector Machine</title><source>Publicly Available Content Database</source><creator>Wang, Senlin ; Nie, Dangmin</creator><creatorcontrib>Wang, Senlin ; Nie, Dangmin</creatorcontrib><description>In response to the problems of slow running speed and high error rates of traditional flight conflict detection algorithms, in this paper, we propose a conflict detection algorithm based on the use of a relevance vector machine. A set of symmetrical historical flight data was used as the training set of the model, and we used the SMOTE resampling method to optimize the training set. We obtained relatively symmetrical training data and trained it with the relevance vector machine, improving the kernels through an intelligent algorithm. We tested this method with new symmetrical flight data. The improved algorithm greatly improved the running speed and was able to effectively reduce the missed alarm rate of in-flight conflict detection symmetrically, thus effectively ensuring flight safety.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym14101992</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Aircraft accidents &amp; safety ; Algorithms ; Aviation ; Bayesian optimization ; Classification ; flight conflict detection ; Flight safety ; Game theory ; Machine learning ; Methods ; Normal distribution ; Probability ; relevance vector machine ; Resampling ; Sparsity ; Support vector machines ; Training</subject><ispartof>Symmetry (Basel), 2022-10, Vol.14 (10), p.1992</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-26a6004eac9776f9a4787a483d550ee4aa1f18a0dd0a316f3dc89219154ac4523</citedby><cites>FETCH-LOGICAL-c364t-26a6004eac9776f9a4787a483d550ee4aa1f18a0dd0a316f3dc89219154ac4523</cites><orcidid>0000-0002-6648-9684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728527723/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728527723?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Wang, Senlin</creatorcontrib><creatorcontrib>Nie, Dangmin</creatorcontrib><title>Flight Conflict Detection Algorithm Based on Relevance Vector Machine</title><title>Symmetry (Basel)</title><description>In response to the problems of slow running speed and high error rates of traditional flight conflict detection algorithms, in this paper, we propose a conflict detection algorithm based on the use of a relevance vector machine. A set of symmetrical historical flight data was used as the training set of the model, and we used the SMOTE resampling method to optimize the training set. We obtained relatively symmetrical training data and trained it with the relevance vector machine, improving the kernels through an intelligent algorithm. We tested this method with new symmetrical flight data. The improved algorithm greatly improved the running speed and was able to effectively reduce the missed alarm rate of in-flight conflict detection symmetrically, thus effectively ensuring flight safety.</description><subject>Accuracy</subject><subject>Aircraft accidents &amp; safety</subject><subject>Algorithms</subject><subject>Aviation</subject><subject>Bayesian optimization</subject><subject>Classification</subject><subject>flight conflict detection</subject><subject>Flight safety</subject><subject>Game theory</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Normal distribution</subject><subject>Probability</subject><subject>relevance vector machine</subject><subject>Resampling</subject><subject>Sparsity</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxYMoWGpPfoGAR4nu_80ea221oAiiXpfpZrZNSbN1sxX67Y1WpHOZ4fHjzeNl2SUlN5wbctvtN1RQQo1hJ9mAEc2L0hhxenSfZ6OuW5N-JJFCkUE2nTX1cpXySWh9U7uU32NCl-rQ5uNmGWKdVpv8Djqs8l56xQa_oHWYf_RQiPkzuFXd4kV25qHpcPS3h9n7bPo2eSyeXh7mk_FT4bgSqWAKFCECwRmtlTcgdKlBlLySkiAKAOppCaSqCHCqPK9caRg1VApwQjI-zOYH3yrA2m5jvYG4twFq-yuEuLQQU-0atFpqr4gBjWYhFOKCAKpSUucdBeIXvdfVwWsbw-cOu2TXYRfbPr5lmpWSac14T10fKBdD10X0_18psT-126Pa-TfVXHOq</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wang, Senlin</creator><creator>Nie, Dangmin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6648-9684</orcidid></search><sort><creationdate>20221001</creationdate><title>Flight Conflict Detection Algorithm Based on Relevance Vector Machine</title><author>Wang, Senlin ; Nie, Dangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-26a6004eac9776f9a4787a483d550ee4aa1f18a0dd0a316f3dc89219154ac4523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Aircraft accidents &amp; safety</topic><topic>Algorithms</topic><topic>Aviation</topic><topic>Bayesian optimization</topic><topic>Classification</topic><topic>flight conflict detection</topic><topic>Flight safety</topic><topic>Game theory</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Normal distribution</topic><topic>Probability</topic><topic>relevance vector machine</topic><topic>Resampling</topic><topic>Sparsity</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Senlin</creatorcontrib><creatorcontrib>Nie, Dangmin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Senlin</au><au>Nie, Dangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flight Conflict Detection Algorithm Based on Relevance Vector Machine</atitle><jtitle>Symmetry (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>14</volume><issue>10</issue><spage>1992</spage><pages>1992-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>In response to the problems of slow running speed and high error rates of traditional flight conflict detection algorithms, in this paper, we propose a conflict detection algorithm based on the use of a relevance vector machine. A set of symmetrical historical flight data was used as the training set of the model, and we used the SMOTE resampling method to optimize the training set. We obtained relatively symmetrical training data and trained it with the relevance vector machine, improving the kernels through an intelligent algorithm. We tested this method with new symmetrical flight data. The improved algorithm greatly improved the running speed and was able to effectively reduce the missed alarm rate of in-flight conflict detection symmetrically, thus effectively ensuring flight safety.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym14101992</doi><orcidid>https://orcid.org/0000-0002-6648-9684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2022-10, Vol.14 (10), p.1992
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_757f609a7e9b46eeb0ae6851cfc1a0fb
source Publicly Available Content Database
subjects Accuracy
Aircraft accidents & safety
Algorithms
Aviation
Bayesian optimization
Classification
flight conflict detection
Flight safety
Game theory
Machine learning
Methods
Normal distribution
Probability
relevance vector machine
Resampling
Sparsity
Support vector machines
Training
title Flight Conflict Detection Algorithm Based on Relevance Vector Machine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flight%20Conflict%20Detection%20Algorithm%20Based%20on%20Relevance%20Vector%20Machine&rft.jtitle=Symmetry%20(Basel)&rft.au=Wang,%20Senlin&rft.date=2022-10-01&rft.volume=14&rft.issue=10&rft.spage=1992&rft.pages=1992-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym14101992&rft_dat=%3Cproquest_doaj_%3E2728527723%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-26a6004eac9776f9a4787a483d550ee4aa1f18a0dd0a316f3dc89219154ac4523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728527723&rft_id=info:pmid/&rfr_iscdi=true