Loading…

Behavior of Nitrogen in GH4169 Superalloy Melt during Vacuum Induction Melting Using Returned Materials

The nitrogen behavior of superalloy melt GH4169 during the vacuum induction melting (VIM) process was clarified by using different proportions of returned materials including block-shaped returned material, chip-shaped returned material, and pure materials to produce a high–purity superalloy melt an...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2021-07, Vol.11 (7), p.1119
Main Authors: Gao, Shengyong, Wang, Min, Xie, Xiaoyu, Liu, Meng, Bao, Yanping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-27d6705b2b9c7b4c9bf05c0fd2ce19a6762a1d2b9123d7dc5945d1824b5ddbc13
cites cdi_FETCH-LOGICAL-c364t-27d6705b2b9c7b4c9bf05c0fd2ce19a6762a1d2b9123d7dc5945d1824b5ddbc13
container_end_page
container_issue 7
container_start_page 1119
container_title Metals (Basel )
container_volume 11
creator Gao, Shengyong
Wang, Min
Xie, Xiaoyu
Liu, Meng
Bao, Yanping
description The nitrogen behavior of superalloy melt GH4169 during the vacuum induction melting (VIM) process was clarified by using different proportions of returned materials including block-shaped returned material, chip-shaped returned material, and pure materials to produce a high–purity superalloy melt and provide guidance for the purification of the superalloy melt. For the nitrogen removal during the VIM process, the denitrification rate in the refining period reached 10 ppm per hour on average, which is significantly higher than 1 ppm per hour on average in the melting period. The denitrification reaction of superalloy melt GH4169 under extremely low vacuum pressure is controlled by both the mass transfer of nitrogen in the melt and the chemical reaction of the liquid–gas interface. The nitrogen removal of superalloy melts during VIM occurs through the two methods of gasification denitrification and nitride floatation because the nitrides begin to precipitate in the liquid phase at 1550 °C. A higher nitrogen removal rate can be obtained by increasing the proportion of chip-shaped material or decreasing the proportion of block-shaped material.
doi_str_mv 10.3390/met11071119
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_75b5768caffb4c91a5802c5babcbc58a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_75b5768caffb4c91a5802c5babcbc58a</doaj_id><sourcerecordid>2554610930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-27d6705b2b9c7b4c9bf05c0fd2ce19a6762a1d2b9123d7dc5945d1824b5ddbc13</originalsourceid><addsrcrecordid>eNpNUd9LwzAQLqLgmHvyHwj4KNUkbZLmUYdug01Bna8hv1ozumamqbD_3nYT2T3cd9z38d0dlyTXCN5lGYf3WxsRggwhxM-SEYaMpDmD6PykvkwmbbuBfRSYQs5HSfVov-SP8wH4Ery4GHxlG-AaMJvniHLw3u1skHXt92Bl6whMF1xTgU-pu24LFo3pdHS-OZADsW6H_GZjFxprwEpGG5ys26vkouzBTv5wnKyfnz6m83T5OltMH5apzmgeU8wMZZAorLhmKtdclZBoWBqsLeKSMoolMj2LcGaY0YTnxKAC54oYozTKxsni6Gu83IhdcFsZ9sJLJw4NHyohQ3S6toIRRRgttCzLYRKSpIBYEyWVVpoUsve6OXrtgv_ubBvFxvdn9esLTEhOEeQZ7FW3R5UOvm2DLf-nIiiGx4iTx2S_RqiAYw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554610930</pqid></control><display><type>article</type><title>Behavior of Nitrogen in GH4169 Superalloy Melt during Vacuum Induction Melting Using Returned Materials</title><source>Publicly Available Content Database</source><creator>Gao, Shengyong ; Wang, Min ; Xie, Xiaoyu ; Liu, Meng ; Bao, Yanping</creator><creatorcontrib>Gao, Shengyong ; Wang, Min ; Xie, Xiaoyu ; Liu, Meng ; Bao, Yanping</creatorcontrib><description>The nitrogen behavior of superalloy melt GH4169 during the vacuum induction melting (VIM) process was clarified by using different proportions of returned materials including block-shaped returned material, chip-shaped returned material, and pure materials to produce a high–purity superalloy melt and provide guidance for the purification of the superalloy melt. For the nitrogen removal during the VIM process, the denitrification rate in the refining period reached 10 ppm per hour on average, which is significantly higher than 1 ppm per hour on average in the melting period. The denitrification reaction of superalloy melt GH4169 under extremely low vacuum pressure is controlled by both the mass transfer of nitrogen in the melt and the chemical reaction of the liquid–gas interface. The nitrogen removal of superalloy melts during VIM occurs through the two methods of gasification denitrification and nitride floatation because the nitrides begin to precipitate in the liquid phase at 1550 °C. A higher nitrogen removal rate can be obtained by increasing the proportion of chip-shaped material or decreasing the proportion of block-shaped material.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11071119</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Chemical reactions ; denitrification ; Flotation ; Gasification ; Liquid phases ; Low vacuum ; Mass transfer ; Mechanical properties ; Metallurgy ; Nickel ; Nitrides ; Nitrogen ; Nitrogen removal ; Raw materials ; returned materials ; Sulfur ; superalloy ; Superalloys ; Vacuum induction melting</subject><ispartof>Metals (Basel ), 2021-07, Vol.11 (7), p.1119</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-27d6705b2b9c7b4c9bf05c0fd2ce19a6762a1d2b9123d7dc5945d1824b5ddbc13</citedby><cites>FETCH-LOGICAL-c364t-27d6705b2b9c7b4c9bf05c0fd2ce19a6762a1d2b9123d7dc5945d1824b5ddbc13</cites><orcidid>0000-0001-7121-3351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554610930/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554610930?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Gao, Shengyong</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Xie, Xiaoyu</creatorcontrib><creatorcontrib>Liu, Meng</creatorcontrib><creatorcontrib>Bao, Yanping</creatorcontrib><title>Behavior of Nitrogen in GH4169 Superalloy Melt during Vacuum Induction Melting Using Returned Materials</title><title>Metals (Basel )</title><description>The nitrogen behavior of superalloy melt GH4169 during the vacuum induction melting (VIM) process was clarified by using different proportions of returned materials including block-shaped returned material, chip-shaped returned material, and pure materials to produce a high–purity superalloy melt and provide guidance for the purification of the superalloy melt. For the nitrogen removal during the VIM process, the denitrification rate in the refining period reached 10 ppm per hour on average, which is significantly higher than 1 ppm per hour on average in the melting period. The denitrification reaction of superalloy melt GH4169 under extremely low vacuum pressure is controlled by both the mass transfer of nitrogen in the melt and the chemical reaction of the liquid–gas interface. The nitrogen removal of superalloy melts during VIM occurs through the two methods of gasification denitrification and nitride floatation because the nitrides begin to precipitate in the liquid phase at 1550 °C. A higher nitrogen removal rate can be obtained by increasing the proportion of chip-shaped material or decreasing the proportion of block-shaped material.</description><subject>Alloys</subject><subject>Chemical reactions</subject><subject>denitrification</subject><subject>Flotation</subject><subject>Gasification</subject><subject>Liquid phases</subject><subject>Low vacuum</subject><subject>Mass transfer</subject><subject>Mechanical properties</subject><subject>Metallurgy</subject><subject>Nickel</subject><subject>Nitrides</subject><subject>Nitrogen</subject><subject>Nitrogen removal</subject><subject>Raw materials</subject><subject>returned materials</subject><subject>Sulfur</subject><subject>superalloy</subject><subject>Superalloys</subject><subject>Vacuum induction melting</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUd9LwzAQLqLgmHvyHwj4KNUkbZLmUYdug01Bna8hv1ozumamqbD_3nYT2T3cd9z38d0dlyTXCN5lGYf3WxsRggwhxM-SEYaMpDmD6PykvkwmbbuBfRSYQs5HSfVov-SP8wH4Ery4GHxlG-AaMJvniHLw3u1skHXt92Bl6whMF1xTgU-pu24LFo3pdHS-OZADsW6H_GZjFxprwEpGG5ys26vkouzBTv5wnKyfnz6m83T5OltMH5apzmgeU8wMZZAorLhmKtdclZBoWBqsLeKSMoolMj2LcGaY0YTnxKAC54oYozTKxsni6Gu83IhdcFsZ9sJLJw4NHyohQ3S6toIRRRgttCzLYRKSpIBYEyWVVpoUsve6OXrtgv_ubBvFxvdn9esLTEhOEeQZ7FW3R5UOvm2DLf-nIiiGx4iTx2S_RqiAYw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Gao, Shengyong</creator><creator>Wang, Min</creator><creator>Xie, Xiaoyu</creator><creator>Liu, Meng</creator><creator>Bao, Yanping</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7121-3351</orcidid></search><sort><creationdate>20210701</creationdate><title>Behavior of Nitrogen in GH4169 Superalloy Melt during Vacuum Induction Melting Using Returned Materials</title><author>Gao, Shengyong ; Wang, Min ; Xie, Xiaoyu ; Liu, Meng ; Bao, Yanping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-27d6705b2b9c7b4c9bf05c0fd2ce19a6762a1d2b9123d7dc5945d1824b5ddbc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Chemical reactions</topic><topic>denitrification</topic><topic>Flotation</topic><topic>Gasification</topic><topic>Liquid phases</topic><topic>Low vacuum</topic><topic>Mass transfer</topic><topic>Mechanical properties</topic><topic>Metallurgy</topic><topic>Nickel</topic><topic>Nitrides</topic><topic>Nitrogen</topic><topic>Nitrogen removal</topic><topic>Raw materials</topic><topic>returned materials</topic><topic>Sulfur</topic><topic>superalloy</topic><topic>Superalloys</topic><topic>Vacuum induction melting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shengyong</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Xie, Xiaoyu</creatorcontrib><creatorcontrib>Liu, Meng</creatorcontrib><creatorcontrib>Bao, Yanping</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Shengyong</au><au>Wang, Min</au><au>Xie, Xiaoyu</au><au>Liu, Meng</au><au>Bao, Yanping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of Nitrogen in GH4169 Superalloy Melt during Vacuum Induction Melting Using Returned Materials</atitle><jtitle>Metals (Basel )</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>7</issue><spage>1119</spage><pages>1119-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>The nitrogen behavior of superalloy melt GH4169 during the vacuum induction melting (VIM) process was clarified by using different proportions of returned materials including block-shaped returned material, chip-shaped returned material, and pure materials to produce a high–purity superalloy melt and provide guidance for the purification of the superalloy melt. For the nitrogen removal during the VIM process, the denitrification rate in the refining period reached 10 ppm per hour on average, which is significantly higher than 1 ppm per hour on average in the melting period. The denitrification reaction of superalloy melt GH4169 under extremely low vacuum pressure is controlled by both the mass transfer of nitrogen in the melt and the chemical reaction of the liquid–gas interface. The nitrogen removal of superalloy melts during VIM occurs through the two methods of gasification denitrification and nitride floatation because the nitrides begin to precipitate in the liquid phase at 1550 °C. A higher nitrogen removal rate can be obtained by increasing the proportion of chip-shaped material or decreasing the proportion of block-shaped material.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11071119</doi><orcidid>https://orcid.org/0000-0001-7121-3351</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2021-07, Vol.11 (7), p.1119
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_75b5768caffb4c91a5802c5babcbc58a
source Publicly Available Content Database
subjects Alloys
Chemical reactions
denitrification
Flotation
Gasification
Liquid phases
Low vacuum
Mass transfer
Mechanical properties
Metallurgy
Nickel
Nitrides
Nitrogen
Nitrogen removal
Raw materials
returned materials
Sulfur
superalloy
Superalloys
Vacuum induction melting
title Behavior of Nitrogen in GH4169 Superalloy Melt during Vacuum Induction Melting Using Returned Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20Nitrogen%20in%20GH4169%20Superalloy%20Melt%20during%20Vacuum%20Induction%20Melting%20Using%20Returned%20Materials&rft.jtitle=Metals%20(Basel%20)&rft.au=Gao,%20Shengyong&rft.date=2021-07-01&rft.volume=11&rft.issue=7&rft.spage=1119&rft.pages=1119-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11071119&rft_dat=%3Cproquest_doaj_%3E2554610930%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-27d6705b2b9c7b4c9bf05c0fd2ce19a6762a1d2b9123d7dc5945d1824b5ddbc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554610930&rft_id=info:pmid/&rfr_iscdi=true