Loading…

Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion

In this work, hydrogen production from the co-digestion of sugarcane straw and sugarcane vinasse in the dark fermentation (DF) process was monitored using a cost-effective hydrogen detection system. This system included a sensor of the MQ-8 series, an Arduino Leonardo board, and a computer. For the...

Full description

Saved in:
Bibliographic Details
Published in:AgriEngineering 2024-03, Vol.6 (1), p.479-490
Main Authors: Barrera, Andrés, Gómez-Ríos, David, Ramírez-Malule, Howard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c383t-6dafbe351c98535ac2a7b9dd0f9f99507afd78e83c85b29d1ecbc4e2a472300f3
container_end_page 490
container_issue 1
container_start_page 479
container_title AgriEngineering
container_volume 6
creator Barrera, Andrés
Gómez-Ríos, David
Ramírez-Malule, Howard
description In this work, hydrogen production from the co-digestion of sugarcane straw and sugarcane vinasse in the dark fermentation (DF) process was monitored using a cost-effective hydrogen detection system. This system included a sensor of the MQ-8 series, an Arduino Leonardo board, and a computer. For the DF, different concentrations of sugarcane vinasse and volumetric ratios of vinasse/hemicellulose hydrolysate were used together with a thermally pretreated inoculum, while the hydrogen detection system stored the hydrogen concentration data during the fermentation time. The results showed that a higher concentration of vinasse led to higher inhibitors for the DF, resulting in a longer lag phase. Additionally, the hydrogen detection system proved to be a useful tool in monitoring the DF, showcasing a rapid response time, and providing reliable information about the period of adaptation of the inoculum to the substrate. The measurement system was assessed using the error metrics SE, RMSE, and MBE, whose values ranged 0.6 and 5.0% as minimum and maximum values. The CV (1.0–8.0%) and SD (0.79–5.62 ppm) confirmed the sensor’s robustness, while the ANOVA at the 5% significance level affirmed the repeatability of measurements with this instrument. The RMSE values supported the accuracy of the sensor for online measurements (6.08–14.78 ppm). The adoption of this straightforward and affordable method sped up the analysis of hydrogen in secluded regions without incurring the expenses associated with traditional measuring instruments while offering a promising solution for biomass valorization, contributing to the advancement of rural green energy initiatives in remote areas.
doi_str_mv 10.3390/agriengineering6010029
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_75ba924ac9b54c25b86d27d607f32636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_75ba924ac9b54c25b86d27d607f32636</doaj_id><sourcerecordid>2987058228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6dafbe351c98535ac2a7b9dd0f9f99507afd78e83c85b29d1ecbc4e2a472300f3</originalsourceid><addsrcrecordid>eNptkcFuFDEMhkcIJKrSV0CROA_NJJNJcixbaCstAmmBa-RJnCGrNi7JjKo-Ay_NbBcQBw6WLevz_9ty07zu-FspLT-HqSTMU8qIJeVp4B3nwj5rTsQg-lb3XDz_p37ZnNW65yuieK-sPWl-XtSKtd5hnhlFBmxLD-2G6syuH0OhCTPbYa5UWFzjEmf0c6LMIAf2kXKa6WB7GH2X6Pufkc-FwnIEw_IE7JYJioeMbDcXeDj_ljKszmxD7WWasB7YV82LCLcVz37n0-brh_dfNtft9tPVzeZi23pp5NwOAeKIUnXeGiUVeAF6tCHwaKO1imuIQRs00hs1Chs69KPvUUCvheQ8ytPm5qgbCPbuvqQ7KI-OILmnBpXJQZmTv0Wn1QhW9ODtqHov1GiGIHQYuI5SDHJYtd4cte4L_VjWO9yelpLX9Z2wRnNlhDArNRwpX6jWgvGva8fd4Y_u_3-UvwCeRZex</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2987058228</pqid></control><display><type>article</type><title>Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion</title><source>Publicly Available Content Database</source><creator>Barrera, Andrés ; Gómez-Ríos, David ; Ramírez-Malule, Howard</creator><creatorcontrib>Barrera, Andrés ; Gómez-Ríos, David ; Ramírez-Malule, Howard</creatorcontrib><description>In this work, hydrogen production from the co-digestion of sugarcane straw and sugarcane vinasse in the dark fermentation (DF) process was monitored using a cost-effective hydrogen detection system. This system included a sensor of the MQ-8 series, an Arduino Leonardo board, and a computer. For the DF, different concentrations of sugarcane vinasse and volumetric ratios of vinasse/hemicellulose hydrolysate were used together with a thermally pretreated inoculum, while the hydrogen detection system stored the hydrogen concentration data during the fermentation time. The results showed that a higher concentration of vinasse led to higher inhibitors for the DF, resulting in a longer lag phase. Additionally, the hydrogen detection system proved to be a useful tool in monitoring the DF, showcasing a rapid response time, and providing reliable information about the period of adaptation of the inoculum to the substrate. The measurement system was assessed using the error metrics SE, RMSE, and MBE, whose values ranged 0.6 and 5.0% as minimum and maximum values. The CV (1.0–8.0%) and SD (0.79–5.62 ppm) confirmed the sensor’s robustness, while the ANOVA at the 5% significance level affirmed the repeatability of measurements with this instrument. The RMSE values supported the accuracy of the sensor for online measurements (6.08–14.78 ppm). The adoption of this straightforward and affordable method sped up the analysis of hydrogen in secluded regions without incurring the expenses associated with traditional measuring instruments while offering a promising solution for biomass valorization, contributing to the advancement of rural green energy initiatives in remote areas.</description><identifier>ISSN: 2624-7402</identifier><identifier>EISSN: 2624-7402</identifier><identifier>DOI: 10.3390/agriengineering6010029</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptation ; Alternative energy sources ; Biogas ; Biohydrogen ; Carbon ; Chemical sensors ; Chromatography ; Clean energy ; co-digestion ; dark fermentation ; Digestion ; Energy resources ; Ethanol ; Fermentation ; Green energy ; Hemicellulose ; Hydrogen ; Hydrogen production ; Hydrolysates ; Inoculum ; Lignocellulose ; Measuring instruments ; Metabolism ; Monitoring ; MQ-8 sensor ; Oxidation ; Root-mean-square errors ; Rural areas ; Sensors ; Sludge ; Straw ; Substrates ; Sugarcane ; Variance analysis ; Vinasse</subject><ispartof>AgriEngineering, 2024-03, Vol.6 (1), p.479-490</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c383t-6dafbe351c98535ac2a7b9dd0f9f99507afd78e83c85b29d1ecbc4e2a472300f3</cites><orcidid>0000-0002-9858-9559 ; 0009-0003-2660-606X ; 0000-0003-1013-5809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2987058228/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2987058228?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Barrera, Andrés</creatorcontrib><creatorcontrib>Gómez-Ríos, David</creatorcontrib><creatorcontrib>Ramírez-Malule, Howard</creatorcontrib><title>Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion</title><title>AgriEngineering</title><description>In this work, hydrogen production from the co-digestion of sugarcane straw and sugarcane vinasse in the dark fermentation (DF) process was monitored using a cost-effective hydrogen detection system. This system included a sensor of the MQ-8 series, an Arduino Leonardo board, and a computer. For the DF, different concentrations of sugarcane vinasse and volumetric ratios of vinasse/hemicellulose hydrolysate were used together with a thermally pretreated inoculum, while the hydrogen detection system stored the hydrogen concentration data during the fermentation time. The results showed that a higher concentration of vinasse led to higher inhibitors for the DF, resulting in a longer lag phase. Additionally, the hydrogen detection system proved to be a useful tool in monitoring the DF, showcasing a rapid response time, and providing reliable information about the period of adaptation of the inoculum to the substrate. The measurement system was assessed using the error metrics SE, RMSE, and MBE, whose values ranged 0.6 and 5.0% as minimum and maximum values. The CV (1.0–8.0%) and SD (0.79–5.62 ppm) confirmed the sensor’s robustness, while the ANOVA at the 5% significance level affirmed the repeatability of measurements with this instrument. The RMSE values supported the accuracy of the sensor for online measurements (6.08–14.78 ppm). The adoption of this straightforward and affordable method sped up the analysis of hydrogen in secluded regions without incurring the expenses associated with traditional measuring instruments while offering a promising solution for biomass valorization, contributing to the advancement of rural green energy initiatives in remote areas.</description><subject>Adaptation</subject><subject>Alternative energy sources</subject><subject>Biogas</subject><subject>Biohydrogen</subject><subject>Carbon</subject><subject>Chemical sensors</subject><subject>Chromatography</subject><subject>Clean energy</subject><subject>co-digestion</subject><subject>dark fermentation</subject><subject>Digestion</subject><subject>Energy resources</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Green energy</subject><subject>Hemicellulose</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Hydrolysates</subject><subject>Inoculum</subject><subject>Lignocellulose</subject><subject>Measuring instruments</subject><subject>Metabolism</subject><subject>Monitoring</subject><subject>MQ-8 sensor</subject><subject>Oxidation</subject><subject>Root-mean-square errors</subject><subject>Rural areas</subject><subject>Sensors</subject><subject>Sludge</subject><subject>Straw</subject><subject>Substrates</subject><subject>Sugarcane</subject><subject>Variance analysis</subject><subject>Vinasse</subject><issn>2624-7402</issn><issn>2624-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkcFuFDEMhkcIJKrSV0CROA_NJJNJcixbaCstAmmBa-RJnCGrNi7JjKo-Ay_NbBcQBw6WLevz_9ty07zu-FspLT-HqSTMU8qIJeVp4B3nwj5rTsQg-lb3XDz_p37ZnNW65yuieK-sPWl-XtSKtd5hnhlFBmxLD-2G6syuH0OhCTPbYa5UWFzjEmf0c6LMIAf2kXKa6WB7GH2X6Pufkc-FwnIEw_IE7JYJioeMbDcXeDj_ljKszmxD7WWasB7YV82LCLcVz37n0-brh_dfNtft9tPVzeZi23pp5NwOAeKIUnXeGiUVeAF6tCHwaKO1imuIQRs00hs1Chs69KPvUUCvheQ8ytPm5qgbCPbuvqQ7KI-OILmnBpXJQZmTv0Wn1QhW9ODtqHov1GiGIHQYuI5SDHJYtd4cte4L_VjWO9yelpLX9Z2wRnNlhDArNRwpX6jWgvGva8fd4Y_u_3-UvwCeRZex</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Barrera, Andrés</creator><creator>Gómez-Ríos, David</creator><creator>Ramírez-Malule, Howard</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9858-9559</orcidid><orcidid>https://orcid.org/0009-0003-2660-606X</orcidid><orcidid>https://orcid.org/0000-0003-1013-5809</orcidid></search><sort><creationdate>20240301</creationdate><title>Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion</title><author>Barrera, Andrés ; Gómez-Ríos, David ; Ramírez-Malule, Howard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6dafbe351c98535ac2a7b9dd0f9f99507afd78e83c85b29d1ecbc4e2a472300f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Alternative energy sources</topic><topic>Biogas</topic><topic>Biohydrogen</topic><topic>Carbon</topic><topic>Chemical sensors</topic><topic>Chromatography</topic><topic>Clean energy</topic><topic>co-digestion</topic><topic>dark fermentation</topic><topic>Digestion</topic><topic>Energy resources</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Green energy</topic><topic>Hemicellulose</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Hydrolysates</topic><topic>Inoculum</topic><topic>Lignocellulose</topic><topic>Measuring instruments</topic><topic>Metabolism</topic><topic>Monitoring</topic><topic>MQ-8 sensor</topic><topic>Oxidation</topic><topic>Root-mean-square errors</topic><topic>Rural areas</topic><topic>Sensors</topic><topic>Sludge</topic><topic>Straw</topic><topic>Substrates</topic><topic>Sugarcane</topic><topic>Variance analysis</topic><topic>Vinasse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrera, Andrés</creatorcontrib><creatorcontrib>Gómez-Ríos, David</creatorcontrib><creatorcontrib>Ramírez-Malule, Howard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AgriEngineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrera, Andrés</au><au>Gómez-Ríos, David</au><au>Ramírez-Malule, Howard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion</atitle><jtitle>AgriEngineering</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>479</spage><epage>490</epage><pages>479-490</pages><issn>2624-7402</issn><eissn>2624-7402</eissn><abstract>In this work, hydrogen production from the co-digestion of sugarcane straw and sugarcane vinasse in the dark fermentation (DF) process was monitored using a cost-effective hydrogen detection system. This system included a sensor of the MQ-8 series, an Arduino Leonardo board, and a computer. For the DF, different concentrations of sugarcane vinasse and volumetric ratios of vinasse/hemicellulose hydrolysate were used together with a thermally pretreated inoculum, while the hydrogen detection system stored the hydrogen concentration data during the fermentation time. The results showed that a higher concentration of vinasse led to higher inhibitors for the DF, resulting in a longer lag phase. Additionally, the hydrogen detection system proved to be a useful tool in monitoring the DF, showcasing a rapid response time, and providing reliable information about the period of adaptation of the inoculum to the substrate. The measurement system was assessed using the error metrics SE, RMSE, and MBE, whose values ranged 0.6 and 5.0% as minimum and maximum values. The CV (1.0–8.0%) and SD (0.79–5.62 ppm) confirmed the sensor’s robustness, while the ANOVA at the 5% significance level affirmed the repeatability of measurements with this instrument. The RMSE values supported the accuracy of the sensor for online measurements (6.08–14.78 ppm). The adoption of this straightforward and affordable method sped up the analysis of hydrogen in secluded regions without incurring the expenses associated with traditional measuring instruments while offering a promising solution for biomass valorization, contributing to the advancement of rural green energy initiatives in remote areas.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriengineering6010029</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9858-9559</orcidid><orcidid>https://orcid.org/0009-0003-2660-606X</orcidid><orcidid>https://orcid.org/0000-0003-1013-5809</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2624-7402
ispartof AgriEngineering, 2024-03, Vol.6 (1), p.479-490
issn 2624-7402
2624-7402
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_75ba924ac9b54c25b86d27d607f32636
source Publicly Available Content Database
subjects Adaptation
Alternative energy sources
Biogas
Biohydrogen
Carbon
Chemical sensors
Chromatography
Clean energy
co-digestion
dark fermentation
Digestion
Energy resources
Ethanol
Fermentation
Green energy
Hemicellulose
Hydrogen
Hydrogen production
Hydrolysates
Inoculum
Lignocellulose
Measuring instruments
Metabolism
Monitoring
MQ-8 sensor
Oxidation
Root-mean-square errors
Rural areas
Sensors
Sludge
Straw
Substrates
Sugarcane
Variance analysis
Vinasse
title Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20a%20Low-Cost%20Hydrogen%20Sensor%20for%20Detection%20and%20Monitoring%20of%20Biohydrogen%20Production%20during%20Sugarcane%20Straw/Vinasse%20Co-Digestion&rft.jtitle=AgriEngineering&rft.au=Barrera,%20Andr%C3%A9s&rft.date=2024-03-01&rft.volume=6&rft.issue=1&rft.spage=479&rft.epage=490&rft.pages=479-490&rft.issn=2624-7402&rft.eissn=2624-7402&rft_id=info:doi/10.3390/agriengineering6010029&rft_dat=%3Cproquest_doaj_%3E2987058228%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-6dafbe351c98535ac2a7b9dd0f9f99507afd78e83c85b29d1ecbc4e2a472300f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2987058228&rft_id=info:pmid/&rfr_iscdi=true