Loading…

Patient organ and effective dose estimation in CT: comparison of four software applications

Background Radiation dose in computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. Hence, dose tracking and organ dose calculation software are increasingly used. We evaluated the organ dose variability associated with the...

Full description

Saved in:
Bibliographic Details
Published in:European radiology experimental 2020-02, Vol.4 (1), p.14-16, Article 14
Main Authors: De Mattia, Cristina, Campanaro, Federica, Rottoli, Federica, Colombo, Paola Enrica, Pola, Andrea, Vanzulli, Angelo, Torresin, Alberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Radiation dose in computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. Hence, dose tracking and organ dose calculation software are increasingly used. We evaluated the organ dose variability associated with the use of different software applications or calculation methods. Methods We tested four commercial software applications on CT protocols actually in use in our hospital: CT-Expo, NCICT, NCICTX, and Virtual Dose. We compared dose coefficients, estimated organ doses and effective doses obtained by the four software applications by varying exposure parameters. Our results were also compared with estimates reported by the software authors. Results All four software applications showed dependence on tube voltage and volume CT dose index, while only CT-Expo was also dependent on other exposure parameters, in particular scanner model and pitch caused a variability till 50%. We found a disagreement between our results and those reported by the software authors (up to 600%), mainly due to a different extent of examined body regions. The relative range of the comparison of the four software applications was within 35% for most organs inside the scan region, but increased over the 100% for organs partially irradiated and outside the scan region. For effective doses, this variability was less evident (ranging from 9 to 36%). Conclusions The two main sources of organ dose variability were the software application used and the scan region set. Dose estimate must be related to the process used for its calculation.
ISSN:2509-9280
2509-9280
DOI:10.1186/s41747-019-0130-5