Loading…

Biochar mitigates dissolved organic carbon loss but does not affect dissolved organic nitrogen leaching loss caused by nitrogen deposition in Moso bamboo plantations

Dissolved organic matter (DOM) is one of the most reactive and mobile components in terrestrial ecosystems. Frequent loss of DOM has a negative effect on the surrounding environment. Current abundant deposition of atmospheric nitrogen (N) could significantly influence DOM leaching, and biochar has b...

Full description

Saved in:
Bibliographic Details
Published in:Global ecology and conservation 2018-10, Vol.16, p.e00494, Article e00494
Main Authors: Lei, Zhaofeng, Li, Quan, Song, Xinzhang, Wang, Weifeng, Zhang, Zhiting, Peng, Changhui, Tian, Linlin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dissolved organic matter (DOM) is one of the most reactive and mobile components in terrestrial ecosystems. Frequent loss of DOM has a negative effect on the surrounding environment. Current abundant deposition of atmospheric nitrogen (N) could significantly influence DOM leaching, and biochar has been suggested to be applied for improving acidic soils However, it remains unclear whether biochar affects dissolved organic carbon (DOC) or dissolved organic nitrogen (DON) loss induced by N deposition in acidic soils. In this study, we observed the effects of biochar amendment (BC0: 0 t biochar ha−1, BC20: 20 t biochar ha−1, and BC40: 40 t biochar ha−1) on the leaching of soil DOC and DON in Moso bamboo plantations that received simulated N deposition (N30: 30 kg N ha−1 yr−1, N60: 60 kg N ha−1 yr−1, N90: 90 kg N ha−1 yr−1, and N-free) for 34 months. DOC loss showed a marked seasonal variation with the lowest loss occurring in spring and the largest loss in summer; no such trend was observed in DON loss. Nitrogen deposition generally increased DOC and DON leaching loss in all four seasons, except DOC leaching loss in spring. Biochar amendment significantly decreased DOC leaching loss in spring, autumn, and winter; however, there was no significant effect on DON. Biochar may therefore mitigate DOC and DON loss caused by N deposition. DOC loss mitigation was also greater than that for DON, especially in autumn. Biochar application is a potential approach to mitigate the DOC and DON leaching loss induced by increasing atmospheric N deposition in Moso bamboo plantations. Keywords: Dissolved organic matter, Biochar, Simulated leaching, Simulated nitrogen deposition, Phyllostachys edulis
ISSN:2351-9894
2351-9894
DOI:10.1016/j.gecco.2018.e00494