Loading…
Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling
Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain rema...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-08, Vol.13 (16), p.2330 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663 |
---|---|
cites | cdi_FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663 |
container_end_page | |
container_issue | 16 |
container_start_page | 2330 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 13 |
creator | Guidotti, Giulia Soccio, Michelina Argentati, Chiara Luzi, Francesca Aluigi, Annalisa Torre, Luigi Armentano, Ilaria Emiliani, Carla Morena, Francesco Martino, Sabata Lotti, Nadia |
description | Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress–strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications. |
doi_str_mv | 10.3390/nano13162330 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_75cccbd5bb0a4ef3a5d1a9cc9156833a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762483890</galeid><doaj_id>oai_doaj_org_article_75cccbd5bb0a4ef3a5d1a9cc9156833a</doaj_id><sourcerecordid>A762483890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663</originalsourceid><addsrcrecordid>eNpdksFu1DAQhiMEolXpjQewxKVITYljO4m5oLIqdKVSkFjO0cSZ7Lpy7K3tlObdeDi83Qq12AePx_98Y48ny97S4owxWXywYB1ltCoZK15kh2VRy5xLSV8-sQ-y4xBuijQkZY1gr7MDVlcs7cRh9ufa3aEh14kTop9UnDz25KeCYXCmD8QN5Icz80k3xdmgRRI92JDTU56rWRm3wXuw2GsFvnP3s4GI7_PPEBJk4bYpckQfyG8dN2QF2rgd_XLuvdtutNFKx5mATQmjHgaLIXwky3GbDiBqZ8ngPFnpECYkF3atLaLXdk2-uR5NMt5krwYwAY8f16Ps15eL1eIyv_r-dbk4v8oVlyLmXNBedryrZSkUANa8oAiCiQY7YGVTMMV7QUvKgTY1UwPrJAKHWpQKoarYUbbcc3sHN-3W6xH83DrQ7YPD-XULPmplsK2FUqrrRdcVwHFgIHoKUqlU7KphDBLr0561nboRe4U2VdQ8gz4_sXrTrt1dSwsuJK9lIpw8Ery7nTDEdtRBoTHpI9wU2rIRdcMbzmmSvvtPeuMmb1OtHlRJIdhOdbZXrSG9QNvBpcQqzR5HrZzFQSf_eV2VvGGNLFLA6T5AeReCx-Hf9WnR7vqyfdqX7C-23tlx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857413531</pqid></control><display><type>article</type><title>Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Guidotti, Giulia ; Soccio, Michelina ; Argentati, Chiara ; Luzi, Francesca ; Aluigi, Annalisa ; Torre, Luigi ; Armentano, Ilaria ; Emiliani, Carla ; Morena, Francesco ; Martino, Sabata ; Lotti, Nadia</creator><creatorcontrib>Guidotti, Giulia ; Soccio, Michelina ; Argentati, Chiara ; Luzi, Francesca ; Aluigi, Annalisa ; Torre, Luigi ; Armentano, Ilaria ; Emiliani, Carla ; Morena, Francesco ; Martino, Sabata ; Lotti, Nadia</creatorcontrib><description>Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress–strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13162330</identifier><identifier>PMID: 37630915</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Biocompatibility ; Biomedical materials ; Carboxylic acids ; Cell adhesion & migration ; Cell culture ; Cell proliferation ; Chemical synthesis ; Contact angle ; Copolymers ; Cyclohexane ; electrospun scaffolds ; ether linkages ; flexibility ; Hydrophilicity ; Hydrophobicity ; Mechanical properties ; Mesenchymal stem cells ; Methods ; Modulus of elasticity ; Molecular weight ; Morphology ; Nanostructure ; NMR ; Nuclear magnetic resonance ; Oxygen atoms ; poly(butylene trans-1,4-cyclohexanedicarboxylate) ; Polybutylene ; Polymer films ; Polymers ; Properties ; Scaffolds ; Software ; Spectrum analysis ; Stiffness ; Stromal cells ; Structure ; Tissue engineering ; Wettability</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-08, Vol.13 (16), p.2330</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663</citedby><cites>FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663</cites><orcidid>0000-0002-1650-5594 ; 0000-0002-3942-237X ; 0000-0001-6879-2989 ; 0000-0003-3646-9612 ; 0000-0001-8785-5033 ; 0000-0002-7976-2934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857413531/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857413531?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Guidotti, Giulia</creatorcontrib><creatorcontrib>Soccio, Michelina</creatorcontrib><creatorcontrib>Argentati, Chiara</creatorcontrib><creatorcontrib>Luzi, Francesca</creatorcontrib><creatorcontrib>Aluigi, Annalisa</creatorcontrib><creatorcontrib>Torre, Luigi</creatorcontrib><creatorcontrib>Armentano, Ilaria</creatorcontrib><creatorcontrib>Emiliani, Carla</creatorcontrib><creatorcontrib>Morena, Francesco</creatorcontrib><creatorcontrib>Martino, Sabata</creatorcontrib><creatorcontrib>Lotti, Nadia</creatorcontrib><title>Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling</title><title>Nanomaterials (Basel, Switzerland)</title><description>Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress–strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications.</description><subject>Analysis</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Carboxylic acids</subject><subject>Cell adhesion & migration</subject><subject>Cell culture</subject><subject>Cell proliferation</subject><subject>Chemical synthesis</subject><subject>Contact angle</subject><subject>Copolymers</subject><subject>Cyclohexane</subject><subject>electrospun scaffolds</subject><subject>ether linkages</subject><subject>flexibility</subject><subject>Hydrophilicity</subject><subject>Hydrophobicity</subject><subject>Mechanical properties</subject><subject>Mesenchymal stem cells</subject><subject>Methods</subject><subject>Modulus of elasticity</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxygen atoms</subject><subject>poly(butylene trans-1,4-cyclohexanedicarboxylate)</subject><subject>Polybutylene</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Properties</subject><subject>Scaffolds</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Stiffness</subject><subject>Stromal cells</subject><subject>Structure</subject><subject>Tissue engineering</subject><subject>Wettability</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksFu1DAQhiMEolXpjQewxKVITYljO4m5oLIqdKVSkFjO0cSZ7Lpy7K3tlObdeDi83Qq12AePx_98Y48ny97S4owxWXywYB1ltCoZK15kh2VRy5xLSV8-sQ-y4xBuijQkZY1gr7MDVlcs7cRh9ufa3aEh14kTop9UnDz25KeCYXCmD8QN5Icz80k3xdmgRRI92JDTU56rWRm3wXuw2GsFvnP3s4GI7_PPEBJk4bYpckQfyG8dN2QF2rgd_XLuvdtutNFKx5mATQmjHgaLIXwky3GbDiBqZ8ngPFnpECYkF3atLaLXdk2-uR5NMt5krwYwAY8f16Ps15eL1eIyv_r-dbk4v8oVlyLmXNBedryrZSkUANa8oAiCiQY7YGVTMMV7QUvKgTY1UwPrJAKHWpQKoarYUbbcc3sHN-3W6xH83DrQ7YPD-XULPmplsK2FUqrrRdcVwHFgIHoKUqlU7KphDBLr0561nboRe4U2VdQ8gz4_sXrTrt1dSwsuJK9lIpw8Ery7nTDEdtRBoTHpI9wU2rIRdcMbzmmSvvtPeuMmb1OtHlRJIdhOdbZXrSG9QNvBpcQqzR5HrZzFQSf_eV2VvGGNLFLA6T5AeReCx-Hf9WnR7vqyfdqX7C-23tlx</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Guidotti, Giulia</creator><creator>Soccio, Michelina</creator><creator>Argentati, Chiara</creator><creator>Luzi, Francesca</creator><creator>Aluigi, Annalisa</creator><creator>Torre, Luigi</creator><creator>Armentano, Ilaria</creator><creator>Emiliani, Carla</creator><creator>Morena, Francesco</creator><creator>Martino, Sabata</creator><creator>Lotti, Nadia</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1650-5594</orcidid><orcidid>https://orcid.org/0000-0002-3942-237X</orcidid><orcidid>https://orcid.org/0000-0001-6879-2989</orcidid><orcidid>https://orcid.org/0000-0003-3646-9612</orcidid><orcidid>https://orcid.org/0000-0001-8785-5033</orcidid><orcidid>https://orcid.org/0000-0002-7976-2934</orcidid></search><sort><creationdate>20230801</creationdate><title>Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling</title><author>Guidotti, Giulia ; Soccio, Michelina ; Argentati, Chiara ; Luzi, Francesca ; Aluigi, Annalisa ; Torre, Luigi ; Armentano, Ilaria ; Emiliani, Carla ; Morena, Francesco ; Martino, Sabata ; Lotti, Nadia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Carboxylic acids</topic><topic>Cell adhesion & migration</topic><topic>Cell culture</topic><topic>Cell proliferation</topic><topic>Chemical synthesis</topic><topic>Contact angle</topic><topic>Copolymers</topic><topic>Cyclohexane</topic><topic>electrospun scaffolds</topic><topic>ether linkages</topic><topic>flexibility</topic><topic>Hydrophilicity</topic><topic>Hydrophobicity</topic><topic>Mechanical properties</topic><topic>Mesenchymal stem cells</topic><topic>Methods</topic><topic>Modulus of elasticity</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxygen atoms</topic><topic>poly(butylene trans-1,4-cyclohexanedicarboxylate)</topic><topic>Polybutylene</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Properties</topic><topic>Scaffolds</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Stiffness</topic><topic>Stromal cells</topic><topic>Structure</topic><topic>Tissue engineering</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guidotti, Giulia</creatorcontrib><creatorcontrib>Soccio, Michelina</creatorcontrib><creatorcontrib>Argentati, Chiara</creatorcontrib><creatorcontrib>Luzi, Francesca</creatorcontrib><creatorcontrib>Aluigi, Annalisa</creatorcontrib><creatorcontrib>Torre, Luigi</creatorcontrib><creatorcontrib>Armentano, Ilaria</creatorcontrib><creatorcontrib>Emiliani, Carla</creatorcontrib><creatorcontrib>Morena, Francesco</creatorcontrib><creatorcontrib>Martino, Sabata</creatorcontrib><creatorcontrib>Lotti, Nadia</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guidotti, Giulia</au><au>Soccio, Michelina</au><au>Argentati, Chiara</au><au>Luzi, Francesca</au><au>Aluigi, Annalisa</au><au>Torre, Luigi</au><au>Armentano, Ilaria</au><au>Emiliani, Carla</au><au>Morena, Francesco</au><au>Martino, Sabata</au><au>Lotti, Nadia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>16</issue><spage>2330</spage><pages>2330-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress–strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37630915</pmid><doi>10.3390/nano13162330</doi><orcidid>https://orcid.org/0000-0002-1650-5594</orcidid><orcidid>https://orcid.org/0000-0002-3942-237X</orcidid><orcidid>https://orcid.org/0000-0001-6879-2989</orcidid><orcidid>https://orcid.org/0000-0003-3646-9612</orcidid><orcidid>https://orcid.org/0000-0001-8785-5033</orcidid><orcidid>https://orcid.org/0000-0002-7976-2934</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2023-08, Vol.13 (16), p.2330 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_75cccbd5bb0a4ef3a5d1a9cc9156833a |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis Biocompatibility Biomedical materials Carboxylic acids Cell adhesion & migration Cell culture Cell proliferation Chemical synthesis Contact angle Copolymers Cyclohexane electrospun scaffolds ether linkages flexibility Hydrophilicity Hydrophobicity Mechanical properties Mesenchymal stem cells Methods Modulus of elasticity Molecular weight Morphology Nanostructure NMR Nuclear magnetic resonance Oxygen atoms poly(butylene trans-1,4-cyclohexanedicarboxylate) Polybutylene Polymer films Polymers Properties Scaffolds Software Spectrum analysis Stiffness Stromal cells Structure Tissue engineering Wettability |
title | Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Nanostructured%20Scaffolds%20of%20Poly(butylene%20trans-1,4-cyclohexanedicarboxylate)-Based%20Copolymers%20with%20Tailored%20Hydrophilicity%20and%20Stiffness:%20Implication%20for%20Tissue%20Engineering%20Modeling&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Guidotti,%20Giulia&rft.date=2023-08-01&rft.volume=13&rft.issue=16&rft.spage=2330&rft.pages=2330-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13162330&rft_dat=%3Cgale_doaj_%3EA762483890%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857413531&rft_id=info:pmid/37630915&rft_galeid=A762483890&rfr_iscdi=true |