Loading…

Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling

Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain rema...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-08, Vol.13 (16), p.2330
Main Authors: Guidotti, Giulia, Soccio, Michelina, Argentati, Chiara, Luzi, Francesca, Aluigi, Annalisa, Torre, Luigi, Armentano, Ilaria, Emiliani, Carla, Morena, Francesco, Martino, Sabata, Lotti, Nadia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663
cites cdi_FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663
container_end_page
container_issue 16
container_start_page 2330
container_title Nanomaterials (Basel, Switzerland)
container_volume 13
creator Guidotti, Giulia
Soccio, Michelina
Argentati, Chiara
Luzi, Francesca
Aluigi, Annalisa
Torre, Luigi
Armentano, Ilaria
Emiliani, Carla
Morena, Francesco
Martino, Sabata
Lotti, Nadia
description Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress–strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications.
doi_str_mv 10.3390/nano13162330
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_75cccbd5bb0a4ef3a5d1a9cc9156833a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762483890</galeid><doaj_id>oai_doaj_org_article_75cccbd5bb0a4ef3a5d1a9cc9156833a</doaj_id><sourcerecordid>A762483890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663</originalsourceid><addsrcrecordid>eNpdksFu1DAQhiMEolXpjQewxKVITYljO4m5oLIqdKVSkFjO0cSZ7Lpy7K3tlObdeDi83Qq12AePx_98Y48ny97S4owxWXywYB1ltCoZK15kh2VRy5xLSV8-sQ-y4xBuijQkZY1gr7MDVlcs7cRh9ufa3aEh14kTop9UnDz25KeCYXCmD8QN5Icz80k3xdmgRRI92JDTU56rWRm3wXuw2GsFvnP3s4GI7_PPEBJk4bYpckQfyG8dN2QF2rgd_XLuvdtutNFKx5mATQmjHgaLIXwky3GbDiBqZ8ngPFnpECYkF3atLaLXdk2-uR5NMt5krwYwAY8f16Ps15eL1eIyv_r-dbk4v8oVlyLmXNBedryrZSkUANa8oAiCiQY7YGVTMMV7QUvKgTY1UwPrJAKHWpQKoarYUbbcc3sHN-3W6xH83DrQ7YPD-XULPmplsK2FUqrrRdcVwHFgIHoKUqlU7KphDBLr0561nboRe4U2VdQ8gz4_sXrTrt1dSwsuJK9lIpw8Ery7nTDEdtRBoTHpI9wU2rIRdcMbzmmSvvtPeuMmb1OtHlRJIdhOdbZXrSG9QNvBpcQqzR5HrZzFQSf_eV2VvGGNLFLA6T5AeReCx-Hf9WnR7vqyfdqX7C-23tlx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857413531</pqid></control><display><type>article</type><title>Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Guidotti, Giulia ; Soccio, Michelina ; Argentati, Chiara ; Luzi, Francesca ; Aluigi, Annalisa ; Torre, Luigi ; Armentano, Ilaria ; Emiliani, Carla ; Morena, Francesco ; Martino, Sabata ; Lotti, Nadia</creator><creatorcontrib>Guidotti, Giulia ; Soccio, Michelina ; Argentati, Chiara ; Luzi, Francesca ; Aluigi, Annalisa ; Torre, Luigi ; Armentano, Ilaria ; Emiliani, Carla ; Morena, Francesco ; Martino, Sabata ; Lotti, Nadia</creatorcontrib><description>Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress–strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13162330</identifier><identifier>PMID: 37630915</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Biocompatibility ; Biomedical materials ; Carboxylic acids ; Cell adhesion &amp; migration ; Cell culture ; Cell proliferation ; Chemical synthesis ; Contact angle ; Copolymers ; Cyclohexane ; electrospun scaffolds ; ether linkages ; flexibility ; Hydrophilicity ; Hydrophobicity ; Mechanical properties ; Mesenchymal stem cells ; Methods ; Modulus of elasticity ; Molecular weight ; Morphology ; Nanostructure ; NMR ; Nuclear magnetic resonance ; Oxygen atoms ; poly(butylene trans-1,4-cyclohexanedicarboxylate) ; Polybutylene ; Polymer films ; Polymers ; Properties ; Scaffolds ; Software ; Spectrum analysis ; Stiffness ; Stromal cells ; Structure ; Tissue engineering ; Wettability</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-08, Vol.13 (16), p.2330</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663</citedby><cites>FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663</cites><orcidid>0000-0002-1650-5594 ; 0000-0002-3942-237X ; 0000-0001-6879-2989 ; 0000-0003-3646-9612 ; 0000-0001-8785-5033 ; 0000-0002-7976-2934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857413531/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857413531?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Guidotti, Giulia</creatorcontrib><creatorcontrib>Soccio, Michelina</creatorcontrib><creatorcontrib>Argentati, Chiara</creatorcontrib><creatorcontrib>Luzi, Francesca</creatorcontrib><creatorcontrib>Aluigi, Annalisa</creatorcontrib><creatorcontrib>Torre, Luigi</creatorcontrib><creatorcontrib>Armentano, Ilaria</creatorcontrib><creatorcontrib>Emiliani, Carla</creatorcontrib><creatorcontrib>Morena, Francesco</creatorcontrib><creatorcontrib>Martino, Sabata</creatorcontrib><creatorcontrib>Lotti, Nadia</creatorcontrib><title>Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling</title><title>Nanomaterials (Basel, Switzerland)</title><description>Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress–strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications.</description><subject>Analysis</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Carboxylic acids</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell culture</subject><subject>Cell proliferation</subject><subject>Chemical synthesis</subject><subject>Contact angle</subject><subject>Copolymers</subject><subject>Cyclohexane</subject><subject>electrospun scaffolds</subject><subject>ether linkages</subject><subject>flexibility</subject><subject>Hydrophilicity</subject><subject>Hydrophobicity</subject><subject>Mechanical properties</subject><subject>Mesenchymal stem cells</subject><subject>Methods</subject><subject>Modulus of elasticity</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxygen atoms</subject><subject>poly(butylene trans-1,4-cyclohexanedicarboxylate)</subject><subject>Polybutylene</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Properties</subject><subject>Scaffolds</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Stiffness</subject><subject>Stromal cells</subject><subject>Structure</subject><subject>Tissue engineering</subject><subject>Wettability</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksFu1DAQhiMEolXpjQewxKVITYljO4m5oLIqdKVSkFjO0cSZ7Lpy7K3tlObdeDi83Qq12AePx_98Y48ny97S4owxWXywYB1ltCoZK15kh2VRy5xLSV8-sQ-y4xBuijQkZY1gr7MDVlcs7cRh9ufa3aEh14kTop9UnDz25KeCYXCmD8QN5Icz80k3xdmgRRI92JDTU56rWRm3wXuw2GsFvnP3s4GI7_PPEBJk4bYpckQfyG8dN2QF2rgd_XLuvdtutNFKx5mATQmjHgaLIXwky3GbDiBqZ8ngPFnpECYkF3atLaLXdk2-uR5NMt5krwYwAY8f16Ps15eL1eIyv_r-dbk4v8oVlyLmXNBedryrZSkUANa8oAiCiQY7YGVTMMV7QUvKgTY1UwPrJAKHWpQKoarYUbbcc3sHN-3W6xH83DrQ7YPD-XULPmplsK2FUqrrRdcVwHFgIHoKUqlU7KphDBLr0561nboRe4U2VdQ8gz4_sXrTrt1dSwsuJK9lIpw8Ery7nTDEdtRBoTHpI9wU2rIRdcMbzmmSvvtPeuMmb1OtHlRJIdhOdbZXrSG9QNvBpcQqzR5HrZzFQSf_eV2VvGGNLFLA6T5AeReCx-Hf9WnR7vqyfdqX7C-23tlx</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Guidotti, Giulia</creator><creator>Soccio, Michelina</creator><creator>Argentati, Chiara</creator><creator>Luzi, Francesca</creator><creator>Aluigi, Annalisa</creator><creator>Torre, Luigi</creator><creator>Armentano, Ilaria</creator><creator>Emiliani, Carla</creator><creator>Morena, Francesco</creator><creator>Martino, Sabata</creator><creator>Lotti, Nadia</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1650-5594</orcidid><orcidid>https://orcid.org/0000-0002-3942-237X</orcidid><orcidid>https://orcid.org/0000-0001-6879-2989</orcidid><orcidid>https://orcid.org/0000-0003-3646-9612</orcidid><orcidid>https://orcid.org/0000-0001-8785-5033</orcidid><orcidid>https://orcid.org/0000-0002-7976-2934</orcidid></search><sort><creationdate>20230801</creationdate><title>Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling</title><author>Guidotti, Giulia ; Soccio, Michelina ; Argentati, Chiara ; Luzi, Francesca ; Aluigi, Annalisa ; Torre, Luigi ; Armentano, Ilaria ; Emiliani, Carla ; Morena, Francesco ; Martino, Sabata ; Lotti, Nadia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Carboxylic acids</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell culture</topic><topic>Cell proliferation</topic><topic>Chemical synthesis</topic><topic>Contact angle</topic><topic>Copolymers</topic><topic>Cyclohexane</topic><topic>electrospun scaffolds</topic><topic>ether linkages</topic><topic>flexibility</topic><topic>Hydrophilicity</topic><topic>Hydrophobicity</topic><topic>Mechanical properties</topic><topic>Mesenchymal stem cells</topic><topic>Methods</topic><topic>Modulus of elasticity</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxygen atoms</topic><topic>poly(butylene trans-1,4-cyclohexanedicarboxylate)</topic><topic>Polybutylene</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Properties</topic><topic>Scaffolds</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Stiffness</topic><topic>Stromal cells</topic><topic>Structure</topic><topic>Tissue engineering</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guidotti, Giulia</creatorcontrib><creatorcontrib>Soccio, Michelina</creatorcontrib><creatorcontrib>Argentati, Chiara</creatorcontrib><creatorcontrib>Luzi, Francesca</creatorcontrib><creatorcontrib>Aluigi, Annalisa</creatorcontrib><creatorcontrib>Torre, Luigi</creatorcontrib><creatorcontrib>Armentano, Ilaria</creatorcontrib><creatorcontrib>Emiliani, Carla</creatorcontrib><creatorcontrib>Morena, Francesco</creatorcontrib><creatorcontrib>Martino, Sabata</creatorcontrib><creatorcontrib>Lotti, Nadia</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guidotti, Giulia</au><au>Soccio, Michelina</au><au>Argentati, Chiara</au><au>Luzi, Francesca</au><au>Aluigi, Annalisa</au><au>Torre, Luigi</au><au>Armentano, Ilaria</au><au>Emiliani, Carla</au><au>Morena, Francesco</au><au>Martino, Sabata</au><au>Lotti, Nadia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>16</issue><spage>2330</spage><pages>2330-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress–strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37630915</pmid><doi>10.3390/nano13162330</doi><orcidid>https://orcid.org/0000-0002-1650-5594</orcidid><orcidid>https://orcid.org/0000-0002-3942-237X</orcidid><orcidid>https://orcid.org/0000-0001-6879-2989</orcidid><orcidid>https://orcid.org/0000-0003-3646-9612</orcidid><orcidid>https://orcid.org/0000-0001-8785-5033</orcidid><orcidid>https://orcid.org/0000-0002-7976-2934</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2023-08, Vol.13 (16), p.2330
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_75cccbd5bb0a4ef3a5d1a9cc9156833a
source Publicly Available Content Database; PubMed Central
subjects Analysis
Biocompatibility
Biomedical materials
Carboxylic acids
Cell adhesion & migration
Cell culture
Cell proliferation
Chemical synthesis
Contact angle
Copolymers
Cyclohexane
electrospun scaffolds
ether linkages
flexibility
Hydrophilicity
Hydrophobicity
Mechanical properties
Mesenchymal stem cells
Methods
Modulus of elasticity
Molecular weight
Morphology
Nanostructure
NMR
Nuclear magnetic resonance
Oxygen atoms
poly(butylene trans-1,4-cyclohexanedicarboxylate)
Polybutylene
Polymer films
Polymers
Properties
Scaffolds
Software
Spectrum analysis
Stiffness
Stromal cells
Structure
Tissue engineering
Wettability
title Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Nanostructured%20Scaffolds%20of%20Poly(butylene%20trans-1,4-cyclohexanedicarboxylate)-Based%20Copolymers%20with%20Tailored%20Hydrophilicity%20and%20Stiffness:%20Implication%20for%20Tissue%20Engineering%20Modeling&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Guidotti,%20Giulia&rft.date=2023-08-01&rft.volume=13&rft.issue=16&rft.spage=2330&rft.pages=2330-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13162330&rft_dat=%3Cgale_doaj_%3EA762483890%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-451d9b4b7925caae7401ea5358eba32803c4d51214a1873cf3b9ea4a752cea663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857413531&rft_id=info:pmid/37630915&rft_galeid=A762483890&rfr_iscdi=true