Loading…

Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs

Shale gas reservoir is a typical type of unconventional gas reservoir, primarily because of the complex flow mechanism from nanoscale to macroscale. A triple-porosity model (M3 model) comprising kerogen system, matrix system, and natural fracture system was presented to describe the multispace scale...

Full description

Saved in:
Bibliographic Details
Published in:Geofluids 2018-01, Vol.2018 (2018), p.1-11
Main Authors: Wang, Enyuan, Elsworth, Derek, Liu, Jishan, Wei, Ming-Yao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63
cites cdi_FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63
container_end_page 11
container_issue 2018
container_start_page 1
container_title Geofluids
container_volume 2018
creator Wang, Enyuan
Elsworth, Derek
Liu, Jishan
Wei, Ming-Yao
description Shale gas reservoir is a typical type of unconventional gas reservoir, primarily because of the complex flow mechanism from nanoscale to macroscale. A triple-porosity model (M3 model) comprising kerogen system, matrix system, and natural fracture system was presented to describe the multispace scale, multitime scale, and multiphysics characteristic of gas flows in shale reservoir. Apparent permeability model for real gas transport in nanopores, which covers flow regime effect and geomechanical effect, was used to address multiscale flow in shale matrix. This paper aims at quantifying the shale gas in different scales and its sequence in the process of gas production. The model results used for history matching also showed consistency against gas production data from the Barnett Shale. It also revealed the multispace scale process of gas production from a single well, which is supplied by gas transport from natural fracture, matrix, and kerogen sequentially. Sensitivity analysis on the contributions of shale reservoir permeability in different scales gives some insight as to their importance. Simulated results showed that free gas in matrix contributes to the main source of gas production, while the performance of a gas shale well is strongly determined by the natural fracture permeability.
doi_str_mv 10.1155/2018/6948726
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_75d3670d95a641f891fb474f698ff9fe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A594664176</galeid><doaj_id>oai_doaj_org_article_75d3670d95a641f891fb474f698ff9fe</doaj_id><sourcerecordid>A594664176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63</originalsourceid><addsrcrecordid>eNqFkc9vFCEUxydGE2v15tmQeNRpgeHnsWmsNulGY-tVwsBjlw07rDBr0_9e1mnq0XCAvPfh-77w7bq3BJ8Rwvk5xUSdC82UpOJZd0KYUL0idHj-dCb8Zfeq1i3GRA6KnnQ_70rcJ-i_5ZJrnB_QKntIKU5rFHJB8wbQbdwdkp1jnlAOaHVIc6zOJkBXKd-jFbiNnWLdVRQndLs5Nr5DhfI7x1Jfdy-CTRXePO6n3Y-rT3eXX_qbr5-vLy9uescEn3viAwuWay8JHZsxbn3Q4BzDoEcRBLcg1CBF63ii3TBqP2rneWM0kU4Mp931ouuz3Zp9iTtbHky20fwt5LI2tszRJTCS-0FI7DW3gpGgNAkjkywIrULQAZrW-0VrX_KvA9TZbPOhTM2-oZhTyTCVqlFnC7VuLzZxCnku1rXlYRddniDEVr_gmok2Rh4tflwuuPbTtUB4skmwOcZnjvGZx_ga_mHBN3Hy9j7-j3630NAYCPYfTbgaOB3-AFTko6o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052740278</pqid></control><display><type>article</type><title>Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs</title><source>Wiley Online Library Open Access</source><creator>Wang, Enyuan ; Elsworth, Derek ; Liu, Jishan ; Wei, Ming-Yao</creator><contributor>Fulignati, Paolo ; Paolo Fulignati</contributor><creatorcontrib>Wang, Enyuan ; Elsworth, Derek ; Liu, Jishan ; Wei, Ming-Yao ; Fulignati, Paolo ; Paolo Fulignati</creatorcontrib><description>Shale gas reservoir is a typical type of unconventional gas reservoir, primarily because of the complex flow mechanism from nanoscale to macroscale. A triple-porosity model (M3 model) comprising kerogen system, matrix system, and natural fracture system was presented to describe the multispace scale, multitime scale, and multiphysics characteristic of gas flows in shale reservoir. Apparent permeability model for real gas transport in nanopores, which covers flow regime effect and geomechanical effect, was used to address multiscale flow in shale matrix. This paper aims at quantifying the shale gas in different scales and its sequence in the process of gas production. The model results used for history matching also showed consistency against gas production data from the Barnett Shale. It also revealed the multispace scale process of gas production from a single well, which is supplied by gas transport from natural fracture, matrix, and kerogen sequentially. Sensitivity analysis on the contributions of shale reservoir permeability in different scales gives some insight as to their importance. Simulated results showed that free gas in matrix contributes to the main source of gas production, while the performance of a gas shale well is strongly determined by the natural fracture permeability.</description><identifier>ISSN: 1468-8115</identifier><identifier>EISSN: 1468-8123</identifier><identifier>DOI: 10.1155/2018/6948726</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analysis ; Coal ; Computer simulation ; Flow ; Fracture permeability ; Fractured reservoirs ; Gas flow ; Gas production ; Gas transport ; Geomechanics ; Hydraulics ; Kerogen ; Modelling ; Natural gas ; Permeability ; Porosity ; Real gases ; Reservoirs ; Sedimentary rocks ; Sensitivity analysis ; Shale ; Shale gas ; Shale oils ; Transport</subject><ispartof>Geofluids, 2018-01, Vol.2018 (2018), p.1-11</ispartof><rights>Copyright © 2018 Mingyao Wei et al.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2018 Mingyao Wei et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63</citedby><cites>FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63</cites><orcidid>0000-0002-2744-0319 ; 0000-0003-1105-8358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Fulignati, Paolo</contributor><contributor>Paolo Fulignati</contributor><creatorcontrib>Wang, Enyuan</creatorcontrib><creatorcontrib>Elsworth, Derek</creatorcontrib><creatorcontrib>Liu, Jishan</creatorcontrib><creatorcontrib>Wei, Ming-Yao</creatorcontrib><title>Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs</title><title>Geofluids</title><description>Shale gas reservoir is a typical type of unconventional gas reservoir, primarily because of the complex flow mechanism from nanoscale to macroscale. A triple-porosity model (M3 model) comprising kerogen system, matrix system, and natural fracture system was presented to describe the multispace scale, multitime scale, and multiphysics characteristic of gas flows in shale reservoir. Apparent permeability model for real gas transport in nanopores, which covers flow regime effect and geomechanical effect, was used to address multiscale flow in shale matrix. This paper aims at quantifying the shale gas in different scales and its sequence in the process of gas production. The model results used for history matching also showed consistency against gas production data from the Barnett Shale. It also revealed the multispace scale process of gas production from a single well, which is supplied by gas transport from natural fracture, matrix, and kerogen sequentially. Sensitivity analysis on the contributions of shale reservoir permeability in different scales gives some insight as to their importance. Simulated results showed that free gas in matrix contributes to the main source of gas production, while the performance of a gas shale well is strongly determined by the natural fracture permeability.</description><subject>Analysis</subject><subject>Coal</subject><subject>Computer simulation</subject><subject>Flow</subject><subject>Fracture permeability</subject><subject>Fractured reservoirs</subject><subject>Gas flow</subject><subject>Gas production</subject><subject>Gas transport</subject><subject>Geomechanics</subject><subject>Hydraulics</subject><subject>Kerogen</subject><subject>Modelling</subject><subject>Natural gas</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Real gases</subject><subject>Reservoirs</subject><subject>Sedimentary rocks</subject><subject>Sensitivity analysis</subject><subject>Shale</subject><subject>Shale gas</subject><subject>Shale oils</subject><subject>Transport</subject><issn>1468-8115</issn><issn>1468-8123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkc9vFCEUxydGE2v15tmQeNRpgeHnsWmsNulGY-tVwsBjlw07rDBr0_9e1mnq0XCAvPfh-77w7bq3BJ8Rwvk5xUSdC82UpOJZd0KYUL0idHj-dCb8Zfeq1i3GRA6KnnQ_70rcJ-i_5ZJrnB_QKntIKU5rFHJB8wbQbdwdkp1jnlAOaHVIc6zOJkBXKd-jFbiNnWLdVRQndLs5Nr5DhfI7x1Jfdy-CTRXePO6n3Y-rT3eXX_qbr5-vLy9uescEn3viAwuWay8JHZsxbn3Q4BzDoEcRBLcg1CBF63ii3TBqP2rneWM0kU4Mp931ouuz3Zp9iTtbHky20fwt5LI2tszRJTCS-0FI7DW3gpGgNAkjkywIrULQAZrW-0VrX_KvA9TZbPOhTM2-oZhTyTCVqlFnC7VuLzZxCnku1rXlYRddniDEVr_gmok2Rh4tflwuuPbTtUB4skmwOcZnjvGZx_ga_mHBN3Hy9j7-j3630NAYCPYfTbgaOB3-AFTko6o</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Enyuan</creator><creator>Elsworth, Derek</creator><creator>Liu, Jishan</creator><creator>Wei, Ming-Yao</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2744-0319</orcidid><orcidid>https://orcid.org/0000-0003-1105-8358</orcidid></search><sort><creationdate>20180101</creationdate><title>Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs</title><author>Wang, Enyuan ; Elsworth, Derek ; Liu, Jishan ; Wei, Ming-Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Coal</topic><topic>Computer simulation</topic><topic>Flow</topic><topic>Fracture permeability</topic><topic>Fractured reservoirs</topic><topic>Gas flow</topic><topic>Gas production</topic><topic>Gas transport</topic><topic>Geomechanics</topic><topic>Hydraulics</topic><topic>Kerogen</topic><topic>Modelling</topic><topic>Natural gas</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Real gases</topic><topic>Reservoirs</topic><topic>Sedimentary rocks</topic><topic>Sensitivity analysis</topic><topic>Shale</topic><topic>Shale gas</topic><topic>Shale oils</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Enyuan</creatorcontrib><creatorcontrib>Elsworth, Derek</creatorcontrib><creatorcontrib>Liu, Jishan</creatorcontrib><creatorcontrib>Wei, Ming-Yao</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geofluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Enyuan</au><au>Elsworth, Derek</au><au>Liu, Jishan</au><au>Wei, Ming-Yao</au><au>Fulignati, Paolo</au><au>Paolo Fulignati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs</atitle><jtitle>Geofluids</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1468-8115</issn><eissn>1468-8123</eissn><abstract>Shale gas reservoir is a typical type of unconventional gas reservoir, primarily because of the complex flow mechanism from nanoscale to macroscale. A triple-porosity model (M3 model) comprising kerogen system, matrix system, and natural fracture system was presented to describe the multispace scale, multitime scale, and multiphysics characteristic of gas flows in shale reservoir. Apparent permeability model for real gas transport in nanopores, which covers flow regime effect and geomechanical effect, was used to address multiscale flow in shale matrix. This paper aims at quantifying the shale gas in different scales and its sequence in the process of gas production. The model results used for history matching also showed consistency against gas production data from the Barnett Shale. It also revealed the multispace scale process of gas production from a single well, which is supplied by gas transport from natural fracture, matrix, and kerogen sequentially. Sensitivity analysis on the contributions of shale reservoir permeability in different scales gives some insight as to their importance. Simulated results showed that free gas in matrix contributes to the main source of gas production, while the performance of a gas shale well is strongly determined by the natural fracture permeability.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/6948726</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2744-0319</orcidid><orcidid>https://orcid.org/0000-0003-1105-8358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1468-8115
ispartof Geofluids, 2018-01, Vol.2018 (2018), p.1-11
issn 1468-8115
1468-8123
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_75d3670d95a641f891fb474f698ff9fe
source Wiley Online Library Open Access
subjects Analysis
Coal
Computer simulation
Flow
Fracture permeability
Fractured reservoirs
Gas flow
Gas production
Gas transport
Geomechanics
Hydraulics
Kerogen
Modelling
Natural gas
Permeability
Porosity
Real gases
Reservoirs
Sedimentary rocks
Sensitivity analysis
Shale
Shale gas
Shale oils
Transport
title Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triple-Porosity%20Modelling%20for%20the%20Simulation%20of%20Multiscale%20Flow%20Mechanisms%20in%20Shale%20Reservoirs&rft.jtitle=Geofluids&rft.au=Wang,%20Enyuan&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1468-8115&rft.eissn=1468-8123&rft_id=info:doi/10.1155/2018/6948726&rft_dat=%3Cgale_doaj_%3EA594664176%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2052740278&rft_id=info:pmid/&rft_galeid=A594664176&rfr_iscdi=true