Loading…
Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs
Shale gas reservoir is a typical type of unconventional gas reservoir, primarily because of the complex flow mechanism from nanoscale to macroscale. A triple-porosity model (M3 model) comprising kerogen system, matrix system, and natural fracture system was presented to describe the multispace scale...
Saved in:
Published in: | Geofluids 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63 |
container_end_page | 11 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Geofluids |
container_volume | 2018 |
creator | Wang, Enyuan Elsworth, Derek Liu, Jishan Wei, Ming-Yao |
description | Shale gas reservoir is a typical type of unconventional gas reservoir, primarily because of the complex flow mechanism from nanoscale to macroscale. A triple-porosity model (M3 model) comprising kerogen system, matrix system, and natural fracture system was presented to describe the multispace scale, multitime scale, and multiphysics characteristic of gas flows in shale reservoir. Apparent permeability model for real gas transport in nanopores, which covers flow regime effect and geomechanical effect, was used to address multiscale flow in shale matrix. This paper aims at quantifying the shale gas in different scales and its sequence in the process of gas production. The model results used for history matching also showed consistency against gas production data from the Barnett Shale. It also revealed the multispace scale process of gas production from a single well, which is supplied by gas transport from natural fracture, matrix, and kerogen sequentially. Sensitivity analysis on the contributions of shale reservoir permeability in different scales gives some insight as to their importance. Simulated results showed that free gas in matrix contributes to the main source of gas production, while the performance of a gas shale well is strongly determined by the natural fracture permeability. |
doi_str_mv | 10.1155/2018/6948726 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_75d3670d95a641f891fb474f698ff9fe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A594664176</galeid><doaj_id>oai_doaj_org_article_75d3670d95a641f891fb474f698ff9fe</doaj_id><sourcerecordid>A594664176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63</originalsourceid><addsrcrecordid>eNqFkc9vFCEUxydGE2v15tmQeNRpgeHnsWmsNulGY-tVwsBjlw07rDBr0_9e1mnq0XCAvPfh-77w7bq3BJ8Rwvk5xUSdC82UpOJZd0KYUL0idHj-dCb8Zfeq1i3GRA6KnnQ_70rcJ-i_5ZJrnB_QKntIKU5rFHJB8wbQbdwdkp1jnlAOaHVIc6zOJkBXKd-jFbiNnWLdVRQndLs5Nr5DhfI7x1Jfdy-CTRXePO6n3Y-rT3eXX_qbr5-vLy9uescEn3viAwuWay8JHZsxbn3Q4BzDoEcRBLcg1CBF63ii3TBqP2rneWM0kU4Mp931ouuz3Zp9iTtbHky20fwt5LI2tszRJTCS-0FI7DW3gpGgNAkjkywIrULQAZrW-0VrX_KvA9TZbPOhTM2-oZhTyTCVqlFnC7VuLzZxCnku1rXlYRddniDEVr_gmok2Rh4tflwuuPbTtUB4skmwOcZnjvGZx_ga_mHBN3Hy9j7-j3630NAYCPYfTbgaOB3-AFTko6o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052740278</pqid></control><display><type>article</type><title>Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs</title><source>Wiley Online Library Open Access</source><creator>Wang, Enyuan ; Elsworth, Derek ; Liu, Jishan ; Wei, Ming-Yao</creator><contributor>Fulignati, Paolo ; Paolo Fulignati</contributor><creatorcontrib>Wang, Enyuan ; Elsworth, Derek ; Liu, Jishan ; Wei, Ming-Yao ; Fulignati, Paolo ; Paolo Fulignati</creatorcontrib><description>Shale gas reservoir is a typical type of unconventional gas reservoir, primarily because of the complex flow mechanism from nanoscale to macroscale. A triple-porosity model (M3 model) comprising kerogen system, matrix system, and natural fracture system was presented to describe the multispace scale, multitime scale, and multiphysics characteristic of gas flows in shale reservoir. Apparent permeability model for real gas transport in nanopores, which covers flow regime effect and geomechanical effect, was used to address multiscale flow in shale matrix. This paper aims at quantifying the shale gas in different scales and its sequence in the process of gas production. The model results used for history matching also showed consistency against gas production data from the Barnett Shale. It also revealed the multispace scale process of gas production from a single well, which is supplied by gas transport from natural fracture, matrix, and kerogen sequentially. Sensitivity analysis on the contributions of shale reservoir permeability in different scales gives some insight as to their importance. Simulated results showed that free gas in matrix contributes to the main source of gas production, while the performance of a gas shale well is strongly determined by the natural fracture permeability.</description><identifier>ISSN: 1468-8115</identifier><identifier>EISSN: 1468-8123</identifier><identifier>DOI: 10.1155/2018/6948726</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analysis ; Coal ; Computer simulation ; Flow ; Fracture permeability ; Fractured reservoirs ; Gas flow ; Gas production ; Gas transport ; Geomechanics ; Hydraulics ; Kerogen ; Modelling ; Natural gas ; Permeability ; Porosity ; Real gases ; Reservoirs ; Sedimentary rocks ; Sensitivity analysis ; Shale ; Shale gas ; Shale oils ; Transport</subject><ispartof>Geofluids, 2018-01, Vol.2018 (2018), p.1-11</ispartof><rights>Copyright © 2018 Mingyao Wei et al.</rights><rights>COPYRIGHT 2018 John Wiley & Sons, Inc.</rights><rights>Copyright © 2018 Mingyao Wei et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63</citedby><cites>FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63</cites><orcidid>0000-0002-2744-0319 ; 0000-0003-1105-8358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Fulignati, Paolo</contributor><contributor>Paolo Fulignati</contributor><creatorcontrib>Wang, Enyuan</creatorcontrib><creatorcontrib>Elsworth, Derek</creatorcontrib><creatorcontrib>Liu, Jishan</creatorcontrib><creatorcontrib>Wei, Ming-Yao</creatorcontrib><title>Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs</title><title>Geofluids</title><description>Shale gas reservoir is a typical type of unconventional gas reservoir, primarily because of the complex flow mechanism from nanoscale to macroscale. A triple-porosity model (M3 model) comprising kerogen system, matrix system, and natural fracture system was presented to describe the multispace scale, multitime scale, and multiphysics characteristic of gas flows in shale reservoir. Apparent permeability model for real gas transport in nanopores, which covers flow regime effect and geomechanical effect, was used to address multiscale flow in shale matrix. This paper aims at quantifying the shale gas in different scales and its sequence in the process of gas production. The model results used for history matching also showed consistency against gas production data from the Barnett Shale. It also revealed the multispace scale process of gas production from a single well, which is supplied by gas transport from natural fracture, matrix, and kerogen sequentially. Sensitivity analysis on the contributions of shale reservoir permeability in different scales gives some insight as to their importance. Simulated results showed that free gas in matrix contributes to the main source of gas production, while the performance of a gas shale well is strongly determined by the natural fracture permeability.</description><subject>Analysis</subject><subject>Coal</subject><subject>Computer simulation</subject><subject>Flow</subject><subject>Fracture permeability</subject><subject>Fractured reservoirs</subject><subject>Gas flow</subject><subject>Gas production</subject><subject>Gas transport</subject><subject>Geomechanics</subject><subject>Hydraulics</subject><subject>Kerogen</subject><subject>Modelling</subject><subject>Natural gas</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Real gases</subject><subject>Reservoirs</subject><subject>Sedimentary rocks</subject><subject>Sensitivity analysis</subject><subject>Shale</subject><subject>Shale gas</subject><subject>Shale oils</subject><subject>Transport</subject><issn>1468-8115</issn><issn>1468-8123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkc9vFCEUxydGE2v15tmQeNRpgeHnsWmsNulGY-tVwsBjlw07rDBr0_9e1mnq0XCAvPfh-77w7bq3BJ8Rwvk5xUSdC82UpOJZd0KYUL0idHj-dCb8Zfeq1i3GRA6KnnQ_70rcJ-i_5ZJrnB_QKntIKU5rFHJB8wbQbdwdkp1jnlAOaHVIc6zOJkBXKd-jFbiNnWLdVRQndLs5Nr5DhfI7x1Jfdy-CTRXePO6n3Y-rT3eXX_qbr5-vLy9uescEn3viAwuWay8JHZsxbn3Q4BzDoEcRBLcg1CBF63ii3TBqP2rneWM0kU4Mp931ouuz3Zp9iTtbHky20fwt5LI2tszRJTCS-0FI7DW3gpGgNAkjkywIrULQAZrW-0VrX_KvA9TZbPOhTM2-oZhTyTCVqlFnC7VuLzZxCnku1rXlYRddniDEVr_gmok2Rh4tflwuuPbTtUB4skmwOcZnjvGZx_ga_mHBN3Hy9j7-j3630NAYCPYfTbgaOB3-AFTko6o</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Enyuan</creator><creator>Elsworth, Derek</creator><creator>Liu, Jishan</creator><creator>Wei, Ming-Yao</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2744-0319</orcidid><orcidid>https://orcid.org/0000-0003-1105-8358</orcidid></search><sort><creationdate>20180101</creationdate><title>Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs</title><author>Wang, Enyuan ; Elsworth, Derek ; Liu, Jishan ; Wei, Ming-Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Coal</topic><topic>Computer simulation</topic><topic>Flow</topic><topic>Fracture permeability</topic><topic>Fractured reservoirs</topic><topic>Gas flow</topic><topic>Gas production</topic><topic>Gas transport</topic><topic>Geomechanics</topic><topic>Hydraulics</topic><topic>Kerogen</topic><topic>Modelling</topic><topic>Natural gas</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Real gases</topic><topic>Reservoirs</topic><topic>Sedimentary rocks</topic><topic>Sensitivity analysis</topic><topic>Shale</topic><topic>Shale gas</topic><topic>Shale oils</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Enyuan</creatorcontrib><creatorcontrib>Elsworth, Derek</creatorcontrib><creatorcontrib>Liu, Jishan</creatorcontrib><creatorcontrib>Wei, Ming-Yao</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geofluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Enyuan</au><au>Elsworth, Derek</au><au>Liu, Jishan</au><au>Wei, Ming-Yao</au><au>Fulignati, Paolo</au><au>Paolo Fulignati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs</atitle><jtitle>Geofluids</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1468-8115</issn><eissn>1468-8123</eissn><abstract>Shale gas reservoir is a typical type of unconventional gas reservoir, primarily because of the complex flow mechanism from nanoscale to macroscale. A triple-porosity model (M3 model) comprising kerogen system, matrix system, and natural fracture system was presented to describe the multispace scale, multitime scale, and multiphysics characteristic of gas flows in shale reservoir. Apparent permeability model for real gas transport in nanopores, which covers flow regime effect and geomechanical effect, was used to address multiscale flow in shale matrix. This paper aims at quantifying the shale gas in different scales and its sequence in the process of gas production. The model results used for history matching also showed consistency against gas production data from the Barnett Shale. It also revealed the multispace scale process of gas production from a single well, which is supplied by gas transport from natural fracture, matrix, and kerogen sequentially. Sensitivity analysis on the contributions of shale reservoir permeability in different scales gives some insight as to their importance. Simulated results showed that free gas in matrix contributes to the main source of gas production, while the performance of a gas shale well is strongly determined by the natural fracture permeability.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/6948726</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2744-0319</orcidid><orcidid>https://orcid.org/0000-0003-1105-8358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-8115 |
ispartof | Geofluids, 2018-01, Vol.2018 (2018), p.1-11 |
issn | 1468-8115 1468-8123 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_75d3670d95a641f891fb474f698ff9fe |
source | Wiley Online Library Open Access |
subjects | Analysis Coal Computer simulation Flow Fracture permeability Fractured reservoirs Gas flow Gas production Gas transport Geomechanics Hydraulics Kerogen Modelling Natural gas Permeability Porosity Real gases Reservoirs Sedimentary rocks Sensitivity analysis Shale Shale gas Shale oils Transport |
title | Triple-Porosity Modelling for the Simulation of Multiscale Flow Mechanisms in Shale Reservoirs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triple-Porosity%20Modelling%20for%20the%20Simulation%20of%20Multiscale%20Flow%20Mechanisms%20in%20Shale%20Reservoirs&rft.jtitle=Geofluids&rft.au=Wang,%20Enyuan&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1468-8115&rft.eissn=1468-8123&rft_id=info:doi/10.1155/2018/6948726&rft_dat=%3Cgale_doaj_%3EA594664176%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-1df4fa59d712b7385adf9ecc40e9b6f65ae68376385d19c3b9db9cd59ec917c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2052740278&rft_id=info:pmid/&rft_galeid=A594664176&rfr_iscdi=true |