Loading…
Targeting neutrophil apoptosis for enhancing the resolution of inflammation
Resolution of acute inflammation is an active process that requires inhibition of further leukocyte recruitment and removal of leukocytes from inflamed sites. Emigrated neutrophils undergo apoptosis before being removed by scavenger macrophages. Recent studies using a variety of gene knockout, trans...
Saved in:
Published in: | Cells (Basel, Switzerland) Switzerland), 2013-05, Vol.2 (2), p.330-348 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resolution of acute inflammation is an active process that requires inhibition of further leukocyte recruitment and removal of leukocytes from inflamed sites. Emigrated neutrophils undergo apoptosis before being removed by scavenger macrophages. Recent studies using a variety of gene knockout, transgenic and pharmacological strategies in diverse models of inflammation established neutrophil apoptosis as a critical control point in resolving inflammation. Analysis of death mechanisms revealed distinct features in executing the death program in neutrophils, which can be exploited as targets for controlling the lifespan of neutrophils. Indeed, anti-inflammatory and pro-resolution lipid mediators derived from essential fatty acids, such as lipoxin A4 and resolvin E1, autacoids and proteins, such as annexin A1 and TRAIL, and cyclin-dependent kinase inhibitors, can enhance the resolution of inflammation through induction of neutrophil apoptosis and promoting their removal by efferocytosis. In this review, we discuss recent advances in understanding the molecular basis of these actions, highlighting the potential of therapeutic induction of neutrophil apoptosis for dampening neutrophil-mediated tissue injury and inflammation underlying a variety of diseases. |
---|---|
ISSN: | 2073-4409 2073-4409 |
DOI: | 10.3390/cells2020330 |