Loading…

New Reusable Solid Biosensor with Covalent Immobilization of the Horseradish Peroxidase Enzyme: In Situ Liberation Studies of Hydrogen Peroxide by Portable Chemiluminescent Determination

Herein, we reported a chemiluminescent biosensor based on the covalent immobilization of the horseradish peroxidase (HRP) enzyme on a polydimethylsiloxane (PDMS) support to quantify in situ hydrogen peroxide (H2O2). The chemiluminescent reaction based on the use of luminol as an oxidizable substrate...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2020-02, Vol.5 (5), p.2419-2427
Main Authors: Bocanegra-Rodríguez, Sara, Jornet-Martínez, Neus, Molins-Legua, Carmen, Campíns-Falcó, Pilar
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, we reported a chemiluminescent biosensor based on the covalent immobilization of the horseradish peroxidase (HRP) enzyme on a polydimethylsiloxane (PDMS) support to quantify in situ hydrogen peroxide (H2O2). The chemiluminescent reaction based on the use of luminol as an oxidizable substrate, with HRP as the catalyst, has been used in order to quantify H2O2 as the oxidizing agent. The performance of the proposed biosensor has been demonstrated to determine H2O2 liberated by cells in a culture medium and for evaluating the delivery of H2O2 from denture cleaner tablets, as examples of application. For both analyses, the results indicated that the biosensor is cost-effective, sensitive, and selective with a detection limit of 0.02 μM and good linearity over the range 0.06–10 μM. Precision was also satisfactory (relative standard deviation, % RSD < 6). The strength of this biosensing system is the simplicity, portability, and reusability of the devices; it can be applied up to 60 times with 90% of its activity maintained.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b03958