Loading…
A Study on Parameters Influencing Blast-Induced Frequency Content and Dominant Frequency Attenuation
Adverse effects of the blasting vibration on surrounding structures intensify importance of investigation on the blast frequency content while it has not been fully considered in blasting design. In this study, blast-induced frequency content and dominant frequency attenuation are investigated. The...
Saved in:
Published in: | Shock and vibration 2022-03, Vol.2022, p.1-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adverse effects of the blasting vibration on surrounding structures intensify importance of investigation on the blast frequency content while it has not been fully considered in blasting design. In this study, blast-induced frequency content and dominant frequency attenuation are investigated. The results of this study and its comparison with the previous studies demonstrate that investigation of different parameters influencing blast-induced frequency content including peak blast load pressure, rise time, and falling time by the experimental pressure-time history with its Fast Fourier Transform (FFT) analysis leads to the similar results of study by the velocity-time recorded data of an infield blasting. The outcomes of this study on dominant frequency attenuation for different types of explosives but in the same material show approximately the same dominant vibration frequency in far-field for different explosives, whereas a rapid drop of dominant frequency to half of the initial value in near distance to the blasthole can be observed. Investigation on dominant frequency attenuation versus distance for the materials with different natural ground frequencies demonstrates that the geomaterial tends to pass the vibration frequency closer to its natural frequency. If the earth has a lower natural frequency, it will pass the waves with lower dominant frequencies, but it will attenuate the waves with higher dominant frequency. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2022/4626536 |