Loading…

Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation

The surface frustrated Lewis pairs (SFLPs) on defect-laden metal oxides provide catalytic sites to activate H 2 and CO 2 molecules and enable efficient gas-phase CO 2 photocatalysis. Lattice engineering of metal oxides provides a useful strategy to tailor the reactivity of SFLPs. Herein, a one-step...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-11, Vol.11 (1), p.6095-6095, Article 6095
Main Authors: Yan, Tingjiang, Li, Na, Wang, Linlin, Ran, Weiguang, Duchesne, Paul N., Wan, Lili, Nguyen, Nhat Truong, Wang, Lu, Xia, Meikun, Ozin, Geoffrey A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c583t-2597510ba645c1ccdd3300be1f8e9fb14e8eaabee457d573c07fa6184fd7173c3
cites cdi_FETCH-LOGICAL-c583t-2597510ba645c1ccdd3300be1f8e9fb14e8eaabee457d573c07fa6184fd7173c3
container_end_page 6095
container_issue 1
container_start_page 6095
container_title Nature communications
container_volume 11
creator Yan, Tingjiang
Li, Na
Wang, Linlin
Ran, Weiguang
Duchesne, Paul N.
Wan, Lili
Nguyen, Nhat Truong
Wang, Lu
Xia, Meikun
Ozin, Geoffrey A.
description The surface frustrated Lewis pairs (SFLPs) on defect-laden metal oxides provide catalytic sites to activate H 2 and CO 2 molecules and enable efficient gas-phase CO 2 photocatalysis. Lattice engineering of metal oxides provides a useful strategy to tailor the reactivity of SFLPs. Herein, a one-step solvothermal synthesis is developed that enables isomorphic replacement of Lewis acidic site In 3+ ions in In 2 O 3 by single-site Bi 3+ ions, thereby enhancing the propensity to activate CO 2 molecules. The so-formed Bi x In 2-x O 3 materials prove to be three orders of magnitude more photoactive for the reverse water gas shift reaction than In 2 O 3 itself, while also exhibiting notable photoactivity towards methanol production. The increased solar absorption efficiency and efficient charge-separation and transfer of Bi x In 2-x O 3 also contribute to the improved photocatalytic performance. These traits exemplify the opportunities that exist for atom-scale engineering in heterogeneous CO 2 photocatalysis, another step towards the vision of the solar CO 2 refinery. Surface frustrated Lewis pairs (SFLPs) provide a unique class of active sites that enable efficient gas-phase CO 2 photocatalysis. How to tailor the reactivity of the SFLPs represents a major challenge, which the authors address here by single-site Bi 3+ ion substitution of the SFLPs.
doi_str_mv 10.1038/s41467-020-19997-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_761bd719c6e94cb588e57065eef946ad</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_761bd719c6e94cb588e57065eef946ad</doaj_id><sourcerecordid>2466034797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-2597510ba645c1ccdd3300be1f8e9fb14e8eaabee457d573c07fa6184fd7173c3</originalsourceid><addsrcrecordid>eNp9kk-P1SAUxRujcSbjfAFXJG7cVKFAKRsTfdGZSV4yG10TCrevvLSlAlUbv7y814k6LmTDv3N-uVxOUbwk-A3BtHkbGWG1KHGFSyKlFOX6pLisMCMlERV9-tf6oriO8YjzoJI0jD0vLiituBCkuSx-fnBxXFKPdPIjStoNPrjpgHyH3GTdMiL_w1lAcQmdNoC6sMQUdAKL9vDdRTRrFyJqvY8poh4SBH-ACfwS0e6-QnPvkzc66WFNzqB-ted7nZyfXhTPOj1EuH6Yr4ovnz5-3t2W-_ubu937fWl4Q1NZcSk4wa2uGTfEGGspxbgF0jUgu5YwaEDrFoBxYbmgBotO1_mlnRUkb-lVcbdxrddHNQc36rAqr506H_hwUDrk6gZQoiZtdklTg2Sm5U0DXOCaA3SS1dpm1ruNNS_tCNbAlLsxPII-vplcrw7-mxICc1HJDHj9AAj-6wIxqdFFA8Ogz01TFatrTJmQIktf_SM9-iVMuVVZJWglKKEnYLWpTPAxBuh-F0OwOkVFbVFROSrqHBW1ZhPdTHE-fTeEP-j_uH4BCDPD-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473273139</pqid></control><display><type>article</type><title>Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yan, Tingjiang ; Li, Na ; Wang, Linlin ; Ran, Weiguang ; Duchesne, Paul N. ; Wan, Lili ; Nguyen, Nhat Truong ; Wang, Lu ; Xia, Meikun ; Ozin, Geoffrey A.</creator><creatorcontrib>Yan, Tingjiang ; Li, Na ; Wang, Linlin ; Ran, Weiguang ; Duchesne, Paul N. ; Wan, Lili ; Nguyen, Nhat Truong ; Wang, Lu ; Xia, Meikun ; Ozin, Geoffrey A.</creatorcontrib><description>The surface frustrated Lewis pairs (SFLPs) on defect-laden metal oxides provide catalytic sites to activate H 2 and CO 2 molecules and enable efficient gas-phase CO 2 photocatalysis. Lattice engineering of metal oxides provides a useful strategy to tailor the reactivity of SFLPs. Herein, a one-step solvothermal synthesis is developed that enables isomorphic replacement of Lewis acidic site In 3+ ions in In 2 O 3 by single-site Bi 3+ ions, thereby enhancing the propensity to activate CO 2 molecules. The so-formed Bi x In 2-x O 3 materials prove to be three orders of magnitude more photoactive for the reverse water gas shift reaction than In 2 O 3 itself, while also exhibiting notable photoactivity towards methanol production. The increased solar absorption efficiency and efficient charge-separation and transfer of Bi x In 2-x O 3 also contribute to the improved photocatalytic performance. These traits exemplify the opportunities that exist for atom-scale engineering in heterogeneous CO 2 photocatalysis, another step towards the vision of the solar CO 2 refinery. Surface frustrated Lewis pairs (SFLPs) provide a unique class of active sites that enable efficient gas-phase CO 2 photocatalysis. How to tailor the reactivity of the SFLPs represents a major challenge, which the authors address here by single-site Bi 3+ ion substitution of the SFLPs.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-19997-y</identifier><identifier>PMID: 33257718</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/146 ; 147/143 ; 639/4077/909/4101/4102 ; 639/638/77/890 ; 639/925/357/551 ; Active sites ; Bismuth ; Carbon dioxide ; Charge efficiency ; Charge transfer ; Humanities and Social Sciences ; Indium ; Indium oxides ; Ions ; Metal oxides ; multidisciplinary ; Oxides ; Photocatalysis ; Refineries ; Science ; Science (multidisciplinary) ; Shift reaction ; Substitution reactions ; Water gas</subject><ispartof>Nature communications, 2020-11, Vol.11 (1), p.6095-6095, Article 6095</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-2597510ba645c1ccdd3300be1f8e9fb14e8eaabee457d573c07fa6184fd7173c3</citedby><cites>FETCH-LOGICAL-c583t-2597510ba645c1ccdd3300be1f8e9fb14e8eaabee457d573c07fa6184fd7173c3</cites><orcidid>0000-0002-7651-3174 ; 0000-0002-6315-0925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473273139/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473273139?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Yan, Tingjiang</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Ran, Weiguang</creatorcontrib><creatorcontrib>Duchesne, Paul N.</creatorcontrib><creatorcontrib>Wan, Lili</creatorcontrib><creatorcontrib>Nguyen, Nhat Truong</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Xia, Meikun</creatorcontrib><creatorcontrib>Ozin, Geoffrey A.</creatorcontrib><title>Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The surface frustrated Lewis pairs (SFLPs) on defect-laden metal oxides provide catalytic sites to activate H 2 and CO 2 molecules and enable efficient gas-phase CO 2 photocatalysis. Lattice engineering of metal oxides provides a useful strategy to tailor the reactivity of SFLPs. Herein, a one-step solvothermal synthesis is developed that enables isomorphic replacement of Lewis acidic site In 3+ ions in In 2 O 3 by single-site Bi 3+ ions, thereby enhancing the propensity to activate CO 2 molecules. The so-formed Bi x In 2-x O 3 materials prove to be three orders of magnitude more photoactive for the reverse water gas shift reaction than In 2 O 3 itself, while also exhibiting notable photoactivity towards methanol production. The increased solar absorption efficiency and efficient charge-separation and transfer of Bi x In 2-x O 3 also contribute to the improved photocatalytic performance. These traits exemplify the opportunities that exist for atom-scale engineering in heterogeneous CO 2 photocatalysis, another step towards the vision of the solar CO 2 refinery. Surface frustrated Lewis pairs (SFLPs) provide a unique class of active sites that enable efficient gas-phase CO 2 photocatalysis. How to tailor the reactivity of the SFLPs represents a major challenge, which the authors address here by single-site Bi 3+ ion substitution of the SFLPs.</description><subject>119/118</subject><subject>140/146</subject><subject>147/143</subject><subject>639/4077/909/4101/4102</subject><subject>639/638/77/890</subject><subject>639/925/357/551</subject><subject>Active sites</subject><subject>Bismuth</subject><subject>Carbon dioxide</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Humanities and Social Sciences</subject><subject>Indium</subject><subject>Indium oxides</subject><subject>Ions</subject><subject>Metal oxides</subject><subject>multidisciplinary</subject><subject>Oxides</subject><subject>Photocatalysis</subject><subject>Refineries</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shift reaction</subject><subject>Substitution reactions</subject><subject>Water gas</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk-P1SAUxRujcSbjfAFXJG7cVKFAKRsTfdGZSV4yG10TCrevvLSlAlUbv7y814k6LmTDv3N-uVxOUbwk-A3BtHkbGWG1KHGFSyKlFOX6pLisMCMlERV9-tf6oriO8YjzoJI0jD0vLiituBCkuSx-fnBxXFKPdPIjStoNPrjpgHyH3GTdMiL_w1lAcQmdNoC6sMQUdAKL9vDdRTRrFyJqvY8poh4SBH-ACfwS0e6-QnPvkzc66WFNzqB-ted7nZyfXhTPOj1EuH6Yr4ovnz5-3t2W-_ubu937fWl4Q1NZcSk4wa2uGTfEGGspxbgF0jUgu5YwaEDrFoBxYbmgBotO1_mlnRUkb-lVcbdxrddHNQc36rAqr506H_hwUDrk6gZQoiZtdklTg2Sm5U0DXOCaA3SS1dpm1ruNNS_tCNbAlLsxPII-vplcrw7-mxICc1HJDHj9AAj-6wIxqdFFA8Ogz01TFatrTJmQIktf_SM9-iVMuVVZJWglKKEnYLWpTPAxBuh-F0OwOkVFbVFROSrqHBW1ZhPdTHE-fTeEP-j_uH4BCDPD-g</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Yan, Tingjiang</creator><creator>Li, Na</creator><creator>Wang, Linlin</creator><creator>Ran, Weiguang</creator><creator>Duchesne, Paul N.</creator><creator>Wan, Lili</creator><creator>Nguyen, Nhat Truong</creator><creator>Wang, Lu</creator><creator>Xia, Meikun</creator><creator>Ozin, Geoffrey A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7651-3174</orcidid><orcidid>https://orcid.org/0000-0002-6315-0925</orcidid></search><sort><creationdate>20201130</creationdate><title>Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation</title><author>Yan, Tingjiang ; Li, Na ; Wang, Linlin ; Ran, Weiguang ; Duchesne, Paul N. ; Wan, Lili ; Nguyen, Nhat Truong ; Wang, Lu ; Xia, Meikun ; Ozin, Geoffrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-2597510ba645c1ccdd3300be1f8e9fb14e8eaabee457d573c07fa6184fd7173c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>119/118</topic><topic>140/146</topic><topic>147/143</topic><topic>639/4077/909/4101/4102</topic><topic>639/638/77/890</topic><topic>639/925/357/551</topic><topic>Active sites</topic><topic>Bismuth</topic><topic>Carbon dioxide</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Humanities and Social Sciences</topic><topic>Indium</topic><topic>Indium oxides</topic><topic>Ions</topic><topic>Metal oxides</topic><topic>multidisciplinary</topic><topic>Oxides</topic><topic>Photocatalysis</topic><topic>Refineries</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shift reaction</topic><topic>Substitution reactions</topic><topic>Water gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Tingjiang</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Ran, Weiguang</creatorcontrib><creatorcontrib>Duchesne, Paul N.</creatorcontrib><creatorcontrib>Wan, Lili</creatorcontrib><creatorcontrib>Nguyen, Nhat Truong</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Xia, Meikun</creatorcontrib><creatorcontrib>Ozin, Geoffrey A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Tingjiang</au><au>Li, Na</au><au>Wang, Linlin</au><au>Ran, Weiguang</au><au>Duchesne, Paul N.</au><au>Wan, Lili</au><au>Nguyen, Nhat Truong</au><au>Wang, Lu</au><au>Xia, Meikun</au><au>Ozin, Geoffrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2020-11-30</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>6095</spage><epage>6095</epage><pages>6095-6095</pages><artnum>6095</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The surface frustrated Lewis pairs (SFLPs) on defect-laden metal oxides provide catalytic sites to activate H 2 and CO 2 molecules and enable efficient gas-phase CO 2 photocatalysis. Lattice engineering of metal oxides provides a useful strategy to tailor the reactivity of SFLPs. Herein, a one-step solvothermal synthesis is developed that enables isomorphic replacement of Lewis acidic site In 3+ ions in In 2 O 3 by single-site Bi 3+ ions, thereby enhancing the propensity to activate CO 2 molecules. The so-formed Bi x In 2-x O 3 materials prove to be three orders of magnitude more photoactive for the reverse water gas shift reaction than In 2 O 3 itself, while also exhibiting notable photoactivity towards methanol production. The increased solar absorption efficiency and efficient charge-separation and transfer of Bi x In 2-x O 3 also contribute to the improved photocatalytic performance. These traits exemplify the opportunities that exist for atom-scale engineering in heterogeneous CO 2 photocatalysis, another step towards the vision of the solar CO 2 refinery. Surface frustrated Lewis pairs (SFLPs) provide a unique class of active sites that enable efficient gas-phase CO 2 photocatalysis. How to tailor the reactivity of the SFLPs represents a major challenge, which the authors address here by single-site Bi 3+ ion substitution of the SFLPs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33257718</pmid><doi>10.1038/s41467-020-19997-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7651-3174</orcidid><orcidid>https://orcid.org/0000-0002-6315-0925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-11, Vol.11 (1), p.6095-6095, Article 6095
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_761bd719c6e94cb588e57065eef946ad
source Open Access: PubMed Central; Publicly Available Content (ProQuest); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
140/146
147/143
639/4077/909/4101/4102
639/638/77/890
639/925/357/551
Active sites
Bismuth
Carbon dioxide
Charge efficiency
Charge transfer
Humanities and Social Sciences
Indium
Indium oxides
Ions
Metal oxides
multidisciplinary
Oxides
Photocatalysis
Refineries
Science
Science (multidisciplinary)
Shift reaction
Substitution reactions
Water gas
title Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth%20atom%20tailoring%20of%20indium%20oxide%20surface%20frustrated%20Lewis%20pairs%20boosts%20heterogeneous%20CO2%20photocatalytic%20hydrogenation&rft.jtitle=Nature%20communications&rft.au=Yan,%20Tingjiang&rft.date=2020-11-30&rft.volume=11&rft.issue=1&rft.spage=6095&rft.epage=6095&rft.pages=6095-6095&rft.artnum=6095&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-19997-y&rft_dat=%3Cproquest_doaj_%3E2466034797%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-2597510ba645c1ccdd3300be1f8e9fb14e8eaabee457d573c07fa6184fd7173c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473273139&rft_id=info:pmid/33257718&rfr_iscdi=true