Loading…

Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration

The advent of high-throughput single-cell transcriptomic analysis of microglia has revealed different phenotypes that are inherently associated with disease conditions. A common feature of some of these activated phenotypes is the upregulation of galectin-3. Representative examples of these phenotyp...

Full description

Saved in:
Bibliographic Details
Published in:Cell death & disease 2022-07, Vol.13 (7), p.628-11, Article 628
Main Authors: García-Revilla, Juan, Boza-Serrano, Antonio, Espinosa-Oliva, Ana M., Soto, Manuel Sarmiento, Deierborg, Tomas, Ruiz, Rocío, de Pablos, Rocío M., Burguillos, Miguel Angel, Venero, Jose L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c675t-28e352ae3ae9b88041585848dc79aad5ada4a9607137ca7554802f264470c4b93
cites cdi_FETCH-LOGICAL-c675t-28e352ae3ae9b88041585848dc79aad5ada4a9607137ca7554802f264470c4b93
container_end_page 11
container_issue 7
container_start_page 628
container_title Cell death & disease
container_volume 13
creator García-Revilla, Juan
Boza-Serrano, Antonio
Espinosa-Oliva, Ana M.
Soto, Manuel Sarmiento
Deierborg, Tomas
Ruiz, Rocío
de Pablos, Rocío M.
Burguillos, Miguel Angel
Venero, Jose L.
description The advent of high-throughput single-cell transcriptomic analysis of microglia has revealed different phenotypes that are inherently associated with disease conditions. A common feature of some of these activated phenotypes is the upregulation of galectin-3. Representative examples of these phenotypes include disease-associated microglia (DAM) and white-associated microglia (WAM), whose role(s) in neuroprotection/neurotoxicity is a matter of high interest in the microglia community. In this review, we summarise the main findings that demonstrate the ability of galectin-3 to interact with key pattern recognition receptors, including, among others, TLR4 and TREM2 and the importance of galectin-3 in the regulation of microglia activation. Finally, we discuss increasing evidence supporting the involvement of this lectin in the main neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, and stroke.
doi_str_mv 10.1038/s41419-022-05058-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76375f01088348f6b172a92d7d5af1f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76375f01088348f6b172a92d7d5af1f9</doaj_id><sourcerecordid>2691909332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c675t-28e352ae3ae9b88041585848dc79aad5ada4a9607137ca7554802f264470c4b93</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhgdRbFn7B7yQAW-dms9JciNI0baw4I1ehzP5GLPMJmsyU-m_N_th7d4YCElO3jzncPI2zVuMrjGi8mNhmGHVIUI6xBGXHX3RXBLEcMekVC-f7S-aq1I2qA5KEeH96-aCcskVEvyyGW5hcmYOsaMfWmhzKCGObZkhtyG222SXCeZ9aBtMTuMUoIUqf6jBFNslWpdbk6IN-3Npk2-jW3KybnTR5YPqTfPKw1Tc1WldNT--fvl-c9etv93e33xed6YXfO6IdJQTcBScGqSs1dciJZPWCAVgOVhgoHokMBUGBOdMIuJJz5hAhg2Krpr7I9cm2OhdDlvIjzpB0IdAyqOGPAczOS16KrhHGElJmfT9gAUBRayoaTz2e9b6yCq_3W4ZzmjTsqtzqFMXp2vza24v9YAo1oyIXoO1oAkw543rGZG-4j4dcZW1dda4OGeYzqjnNzH81GN60IoiJOrHrZr3J0BOvxZXZr1JS461nZr0CiukKCVVRY6q-lWlZOefMmCk967RR9fo6hp9cI2m9dG757U9PfnrkSqgp17Uqzi6_C_3f7B_AAZizUQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691909332</pqid></control><display><type>article</type><title>Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>García-Revilla, Juan ; Boza-Serrano, Antonio ; Espinosa-Oliva, Ana M. ; Soto, Manuel Sarmiento ; Deierborg, Tomas ; Ruiz, Rocío ; de Pablos, Rocío M. ; Burguillos, Miguel Angel ; Venero, Jose L.</creator><creatorcontrib>García-Revilla, Juan ; Boza-Serrano, Antonio ; Espinosa-Oliva, Ana M. ; Soto, Manuel Sarmiento ; Deierborg, Tomas ; Ruiz, Rocío ; de Pablos, Rocío M. ; Burguillos, Miguel Angel ; Venero, Jose L.</creatorcontrib><description>The advent of high-throughput single-cell transcriptomic analysis of microglia has revealed different phenotypes that are inherently associated with disease conditions. A common feature of some of these activated phenotypes is the upregulation of galectin-3. Representative examples of these phenotypes include disease-associated microglia (DAM) and white-associated microglia (WAM), whose role(s) in neuroprotection/neurotoxicity is a matter of high interest in the microglia community. In this review, we summarise the main findings that demonstrate the ability of galectin-3 to interact with key pattern recognition receptors, including, among others, TLR4 and TREM2 and the importance of galectin-3 in the regulation of microglia activation. Finally, we discuss increasing evidence supporting the involvement of this lectin in the main neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, and stroke.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-022-05058-3</identifier><identifier>PMID: 35859075</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/420/256 ; 692/699/375/365 ; Alzheimer Disease - genetics ; Alzheimer's disease ; Amyotrophic lateral sclerosis ; Antibodies ; Basic Medicine ; Binding sites ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Galectin 3 - genetics ; Galectin-3 ; Gene expression ; Genotype &amp; phenotype ; Glycoproteins ; Humans ; Huntingtons disease ; Immunology ; Life Sciences ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Medicinska och farmaceutiska grundvetenskaper ; Microglia ; Movement disorders ; Multiple sclerosis ; Neurodegeneration ; Neurodegenerative diseases ; Neuroprotection ; Neurosciences ; Neurotoxicity ; Neurovetenskaper ; Parkinson Disease ; Parkinson's disease ; Pattern recognition receptors ; Phenotypes ; Proteins ; Review ; Review Article ; TLR4 protein ; Toll-like receptors ; Transcriptomics ; Traumatic brain injury</subject><ispartof>Cell death &amp; disease, 2022-07, Vol.13 (7), p.628-11, Article 628</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c675t-28e352ae3ae9b88041585848dc79aad5ada4a9607137ca7554802f264470c4b93</citedby><cites>FETCH-LOGICAL-c675t-28e352ae3ae9b88041585848dc79aad5ada4a9607137ca7554802f264470c4b93</cites><orcidid>0000-0003-1137-8706 ; 0000-0002-2160-5813 ; 0000-0002-3165-9997 ; 0000-0001-5142-9972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2691909332/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2691909332?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35859075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/050b93f8-b031-4276-adda-2a4efce6428f$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>García-Revilla, Juan</creatorcontrib><creatorcontrib>Boza-Serrano, Antonio</creatorcontrib><creatorcontrib>Espinosa-Oliva, Ana M.</creatorcontrib><creatorcontrib>Soto, Manuel Sarmiento</creatorcontrib><creatorcontrib>Deierborg, Tomas</creatorcontrib><creatorcontrib>Ruiz, Rocío</creatorcontrib><creatorcontrib>de Pablos, Rocío M.</creatorcontrib><creatorcontrib>Burguillos, Miguel Angel</creatorcontrib><creatorcontrib>Venero, Jose L.</creatorcontrib><title>Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>The advent of high-throughput single-cell transcriptomic analysis of microglia has revealed different phenotypes that are inherently associated with disease conditions. A common feature of some of these activated phenotypes is the upregulation of galectin-3. Representative examples of these phenotypes include disease-associated microglia (DAM) and white-associated microglia (WAM), whose role(s) in neuroprotection/neurotoxicity is a matter of high interest in the microglia community. In this review, we summarise the main findings that demonstrate the ability of galectin-3 to interact with key pattern recognition receptors, including, among others, TLR4 and TREM2 and the importance of galectin-3 in the regulation of microglia activation. Finally, we discuss increasing evidence supporting the involvement of this lectin in the main neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, and stroke.</description><subject>692/420/256</subject><subject>692/699/375/365</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer's disease</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Antibodies</subject><subject>Basic Medicine</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Galectin 3 - genetics</subject><subject>Galectin-3</subject><subject>Gene expression</subject><subject>Genotype &amp; phenotype</subject><subject>Glycoproteins</subject><subject>Humans</subject><subject>Huntingtons disease</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicinska och farmaceutiska grundvetenskaper</subject><subject>Microglia</subject><subject>Movement disorders</subject><subject>Multiple sclerosis</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neuroprotection</subject><subject>Neurosciences</subject><subject>Neurotoxicity</subject><subject>Neurovetenskaper</subject><subject>Parkinson Disease</subject><subject>Parkinson's disease</subject><subject>Pattern recognition receptors</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Review</subject><subject>Review Article</subject><subject>TLR4 protein</subject><subject>Toll-like receptors</subject><subject>Transcriptomics</subject><subject>Traumatic brain injury</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl1rFDEUhgdRbFn7B7yQAW-dms9JciNI0baw4I1ehzP5GLPMJmsyU-m_N_th7d4YCElO3jzncPI2zVuMrjGi8mNhmGHVIUI6xBGXHX3RXBLEcMekVC-f7S-aq1I2qA5KEeH96-aCcskVEvyyGW5hcmYOsaMfWmhzKCGObZkhtyG222SXCeZ9aBtMTuMUoIUqf6jBFNslWpdbk6IN-3Npk2-jW3KybnTR5YPqTfPKw1Tc1WldNT--fvl-c9etv93e33xed6YXfO6IdJQTcBScGqSs1dciJZPWCAVgOVhgoHokMBUGBOdMIuJJz5hAhg2Krpr7I9cm2OhdDlvIjzpB0IdAyqOGPAczOS16KrhHGElJmfT9gAUBRayoaTz2e9b6yCq_3W4ZzmjTsqtzqFMXp2vza24v9YAo1oyIXoO1oAkw543rGZG-4j4dcZW1dda4OGeYzqjnNzH81GN60IoiJOrHrZr3J0BOvxZXZr1JS461nZr0CiukKCVVRY6q-lWlZOefMmCk967RR9fo6hp9cI2m9dG757U9PfnrkSqgp17Uqzi6_C_3f7B_AAZizUQ</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>García-Revilla, Juan</creator><creator>Boza-Serrano, Antonio</creator><creator>Espinosa-Oliva, Ana M.</creator><creator>Soto, Manuel Sarmiento</creator><creator>Deierborg, Tomas</creator><creator>Ruiz, Rocío</creator><creator>de Pablos, Rocío M.</creator><creator>Burguillos, Miguel Angel</creator><creator>Venero, Jose L.</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1137-8706</orcidid><orcidid>https://orcid.org/0000-0002-2160-5813</orcidid><orcidid>https://orcid.org/0000-0002-3165-9997</orcidid><orcidid>https://orcid.org/0000-0001-5142-9972</orcidid></search><sort><creationdate>20220720</creationdate><title>Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration</title><author>García-Revilla, Juan ; Boza-Serrano, Antonio ; Espinosa-Oliva, Ana M. ; Soto, Manuel Sarmiento ; Deierborg, Tomas ; Ruiz, Rocío ; de Pablos, Rocío M. ; Burguillos, Miguel Angel ; Venero, Jose L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c675t-28e352ae3ae9b88041585848dc79aad5ada4a9607137ca7554802f264470c4b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>692/420/256</topic><topic>692/699/375/365</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer's disease</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Antibodies</topic><topic>Basic Medicine</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Galectin 3 - genetics</topic><topic>Galectin-3</topic><topic>Gene expression</topic><topic>Genotype &amp; phenotype</topic><topic>Glycoproteins</topic><topic>Humans</topic><topic>Huntingtons disease</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicinska och farmaceutiska grundvetenskaper</topic><topic>Microglia</topic><topic>Movement disorders</topic><topic>Multiple sclerosis</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neuroprotection</topic><topic>Neurosciences</topic><topic>Neurotoxicity</topic><topic>Neurovetenskaper</topic><topic>Parkinson Disease</topic><topic>Parkinson's disease</topic><topic>Pattern recognition receptors</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Review</topic><topic>Review Article</topic><topic>TLR4 protein</topic><topic>Toll-like receptors</topic><topic>Transcriptomics</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Revilla, Juan</creatorcontrib><creatorcontrib>Boza-Serrano, Antonio</creatorcontrib><creatorcontrib>Espinosa-Oliva, Ana M.</creatorcontrib><creatorcontrib>Soto, Manuel Sarmiento</creatorcontrib><creatorcontrib>Deierborg, Tomas</creatorcontrib><creatorcontrib>Ruiz, Rocío</creatorcontrib><creatorcontrib>de Pablos, Rocío M.</creatorcontrib><creatorcontrib>Burguillos, Miguel Angel</creatorcontrib><creatorcontrib>Venero, Jose L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Revilla, Juan</au><au>Boza-Serrano, Antonio</au><au>Espinosa-Oliva, Ana M.</au><au>Soto, Manuel Sarmiento</au><au>Deierborg, Tomas</au><au>Ruiz, Rocío</au><au>de Pablos, Rocío M.</au><au>Burguillos, Miguel Angel</au><au>Venero, Jose L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2022-07-20</date><risdate>2022</risdate><volume>13</volume><issue>7</issue><spage>628</spage><epage>11</epage><pages>628-11</pages><artnum>628</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>The advent of high-throughput single-cell transcriptomic analysis of microglia has revealed different phenotypes that are inherently associated with disease conditions. A common feature of some of these activated phenotypes is the upregulation of galectin-3. Representative examples of these phenotypes include disease-associated microglia (DAM) and white-associated microglia (WAM), whose role(s) in neuroprotection/neurotoxicity is a matter of high interest in the microglia community. In this review, we summarise the main findings that demonstrate the ability of galectin-3 to interact with key pattern recognition receptors, including, among others, TLR4 and TREM2 and the importance of galectin-3 in the regulation of microglia activation. Finally, we discuss increasing evidence supporting the involvement of this lectin in the main neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, and stroke.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35859075</pmid><doi>10.1038/s41419-022-05058-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1137-8706</orcidid><orcidid>https://orcid.org/0000-0002-2160-5813</orcidid><orcidid>https://orcid.org/0000-0002-3165-9997</orcidid><orcidid>https://orcid.org/0000-0001-5142-9972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2022-07, Vol.13 (7), p.628-11, Article 628
issn 2041-4889
2041-4889
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_76375f01088348f6b172a92d7d5af1f9
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 692/420/256
692/699/375/365
Alzheimer Disease - genetics
Alzheimer's disease
Amyotrophic lateral sclerosis
Antibodies
Basic Medicine
Binding sites
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Culture
Galectin 3 - genetics
Galectin-3
Gene expression
Genotype & phenotype
Glycoproteins
Humans
Huntingtons disease
Immunology
Life Sciences
Medical and Health Sciences
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
Microglia
Movement disorders
Multiple sclerosis
Neurodegeneration
Neurodegenerative diseases
Neuroprotection
Neurosciences
Neurotoxicity
Neurovetenskaper
Parkinson Disease
Parkinson's disease
Pattern recognition receptors
Phenotypes
Proteins
Review
Review Article
TLR4 protein
Toll-like receptors
Transcriptomics
Traumatic brain injury
title Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galectin-3,%20a%20rising%20star%20in%20modulating%20microglia%20activation%20under%20conditions%20of%20neurodegeneration&rft.jtitle=Cell%20death%20&%20disease&rft.au=Garc%C3%ADa-Revilla,%20Juan&rft.date=2022-07-20&rft.volume=13&rft.issue=7&rft.spage=628&rft.epage=11&rft.pages=628-11&rft.artnum=628&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-022-05058-3&rft_dat=%3Cproquest_doaj_%3E2691909332%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c675t-28e352ae3ae9b88041585848dc79aad5ada4a9607137ca7554802f264470c4b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691909332&rft_id=info:pmid/35859075&rfr_iscdi=true