Loading…
Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System
In this paper, the discharge coefficient of triangular labyrinth weir was predicted using multi-layer perceptron (MLP) neural network and Adaptive Neuro Fuzzy Inference System (ANFIS). To this purpose, 223 related dataset were collected. The Gamma Test (GT) was carried out to obtain the most affecti...
Saved in:
Published in: | Alexandria engineering journal 2018-09, Vol.57 (3), p.1773-1782 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3 |
container_end_page | 1782 |
container_issue | 3 |
container_start_page | 1773 |
container_title | Alexandria engineering journal |
container_volume | 57 |
creator | Haghiabi, Amir Hamzeh Parsaie, Abbas Ememgholizadeh, Samad |
description | In this paper, the discharge coefficient of triangular labyrinth weir was predicted using multi-layer perceptron (MLP) neural network and Adaptive Neuro Fuzzy Inference System (ANFIS). To this purpose, 223 related dataset were collected. The Gamma Test (GT) was carried out to obtain the most affective parameters on the discharge coefficient. The results of the GT indicated that the ratio of length of crest of weir to the main channel width Lw/Wmc, the ratio of length of one cycle to its width (Lc/Wc) and the ratio of total upstream head flow to the weir height H/P are the most important parameters. With regarding to the results of the GT, the structure of ANFIS model was designed. The results of ANFIS model with error indices including coefficient of determination value of 0.97 and root mean square error value of 0.03 was so suitable. Comparison the results of MLP with ANFIS model showed that both models has so suitable performance however the structure of ANFIS model is more optimal. |
doi_str_mv | 10.1016/j.aej.2017.05.005 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_763949d71d854b10aae0dddb456769c5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1110016817301679</els_id><doaj_id>oai_doaj_org_article_763949d71d854b10aae0dddb456769c5</doaj_id><sourcerecordid>S1110016817301679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3</originalsourceid><addsrcrecordid>eNp9kMFOAjEQhvegiQR5AG99AdZ2u-2y8USIKAlRE_XczLZT6AZ2SVsw8PQWMR6dy0zmz_9n5suyO0ZzRpm8b3PANi8oq3IqckrFVTZgjNFxEic32SiElqYSVV3WcpBt3zwap6PrO9JbYlzQa_ArJLpHa5122MWzEL2DbrXfgCcbaI7edXFNvtD5QPbBdSsyNbCL7oDkBfe-J_P96XQki86ix04jeT-GiNvb7NrCJuDotw-zz_njx-x5vHx9Wsymy7EuqYxjgMI2UnDNi1obKYytQAPWIGtLGVhry4oLjo0pGDdYVmmSjDcTXkAhjOHDbHHJNT20aufdFvxR9eDUz6L3KwU-Or1BVUmeSJiKmYkoG0YBkBpjmlLIStZapCx2ydK-D8Gj_ctjVJ2Rq1Yl5OqMXFGhEtvkebh4MD15cOhVOJPUCbVHHdMV7h_3N7jJjgw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System</title><source>ScienceDirect - Connect here FIRST to enable access</source><source>IngentaConnect Journals</source><creator>Haghiabi, Amir Hamzeh ; Parsaie, Abbas ; Ememgholizadeh, Samad</creator><creatorcontrib>Haghiabi, Amir Hamzeh ; Parsaie, Abbas ; Ememgholizadeh, Samad</creatorcontrib><description>In this paper, the discharge coefficient of triangular labyrinth weir was predicted using multi-layer perceptron (MLP) neural network and Adaptive Neuro Fuzzy Inference System (ANFIS). To this purpose, 223 related dataset were collected. The Gamma Test (GT) was carried out to obtain the most affective parameters on the discharge coefficient. The results of the GT indicated that the ratio of length of crest of weir to the main channel width Lw/Wmc, the ratio of length of one cycle to its width (Lc/Wc) and the ratio of total upstream head flow to the weir height H/P are the most important parameters. With regarding to the results of the GT, the structure of ANFIS model was designed. The results of ANFIS model with error indices including coefficient of determination value of 0.97 and root mean square error value of 0.03 was so suitable. Comparison the results of MLP with ANFIS model showed that both models has so suitable performance however the structure of ANFIS model is more optimal.</description><identifier>ISSN: 1110-0168</identifier><identifier>DOI: 10.1016/j.aej.2017.05.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>ANFIS ; ANNs ; Discharge coefficient ; Gamma Test ; Labyrinth weir</subject><ispartof>Alexandria engineering journal, 2018-09, Vol.57 (3), p.1773-1782</ispartof><rights>2017 Faculty of Engineering, Alexandria University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3</citedby><cites>FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1110016817301679$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Haghiabi, Amir Hamzeh</creatorcontrib><creatorcontrib>Parsaie, Abbas</creatorcontrib><creatorcontrib>Ememgholizadeh, Samad</creatorcontrib><title>Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System</title><title>Alexandria engineering journal</title><description>In this paper, the discharge coefficient of triangular labyrinth weir was predicted using multi-layer perceptron (MLP) neural network and Adaptive Neuro Fuzzy Inference System (ANFIS). To this purpose, 223 related dataset were collected. The Gamma Test (GT) was carried out to obtain the most affective parameters on the discharge coefficient. The results of the GT indicated that the ratio of length of crest of weir to the main channel width Lw/Wmc, the ratio of length of one cycle to its width (Lc/Wc) and the ratio of total upstream head flow to the weir height H/P are the most important parameters. With regarding to the results of the GT, the structure of ANFIS model was designed. The results of ANFIS model with error indices including coefficient of determination value of 0.97 and root mean square error value of 0.03 was so suitable. Comparison the results of MLP with ANFIS model showed that both models has so suitable performance however the structure of ANFIS model is more optimal.</description><subject>ANFIS</subject><subject>ANNs</subject><subject>Discharge coefficient</subject><subject>Gamma Test</subject><subject>Labyrinth weir</subject><issn>1110-0168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kMFOAjEQhvegiQR5AG99AdZ2u-2y8USIKAlRE_XczLZT6AZ2SVsw8PQWMR6dy0zmz_9n5suyO0ZzRpm8b3PANi8oq3IqckrFVTZgjNFxEic32SiElqYSVV3WcpBt3zwap6PrO9JbYlzQa_ArJLpHa5122MWzEL2DbrXfgCcbaI7edXFNvtD5QPbBdSsyNbCL7oDkBfe-J_P96XQki86ix04jeT-GiNvb7NrCJuDotw-zz_njx-x5vHx9Wsymy7EuqYxjgMI2UnDNi1obKYytQAPWIGtLGVhry4oLjo0pGDdYVmmSjDcTXkAhjOHDbHHJNT20aufdFvxR9eDUz6L3KwU-Or1BVUmeSJiKmYkoG0YBkBpjmlLIStZapCx2ydK-D8Gj_ctjVJ2Rq1Yl5OqMXFGhEtvkebh4MD15cOhVOJPUCbVHHdMV7h_3N7jJjgw</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Haghiabi, Amir Hamzeh</creator><creator>Parsaie, Abbas</creator><creator>Ememgholizadeh, Samad</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201809</creationdate><title>Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System</title><author>Haghiabi, Amir Hamzeh ; Parsaie, Abbas ; Ememgholizadeh, Samad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ANFIS</topic><topic>ANNs</topic><topic>Discharge coefficient</topic><topic>Gamma Test</topic><topic>Labyrinth weir</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haghiabi, Amir Hamzeh</creatorcontrib><creatorcontrib>Parsaie, Abbas</creatorcontrib><creatorcontrib>Ememgholizadeh, Samad</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Alexandria engineering journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haghiabi, Amir Hamzeh</au><au>Parsaie, Abbas</au><au>Ememgholizadeh, Samad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System</atitle><jtitle>Alexandria engineering journal</jtitle><date>2018-09</date><risdate>2018</risdate><volume>57</volume><issue>3</issue><spage>1773</spage><epage>1782</epage><pages>1773-1782</pages><issn>1110-0168</issn><abstract>In this paper, the discharge coefficient of triangular labyrinth weir was predicted using multi-layer perceptron (MLP) neural network and Adaptive Neuro Fuzzy Inference System (ANFIS). To this purpose, 223 related dataset were collected. The Gamma Test (GT) was carried out to obtain the most affective parameters on the discharge coefficient. The results of the GT indicated that the ratio of length of crest of weir to the main channel width Lw/Wmc, the ratio of length of one cycle to its width (Lc/Wc) and the ratio of total upstream head flow to the weir height H/P are the most important parameters. With regarding to the results of the GT, the structure of ANFIS model was designed. The results of ANFIS model with error indices including coefficient of determination value of 0.97 and root mean square error value of 0.03 was so suitable. Comparison the results of MLP with ANFIS model showed that both models has so suitable performance however the structure of ANFIS model is more optimal.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.aej.2017.05.005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-0168 |
ispartof | Alexandria engineering journal, 2018-09, Vol.57 (3), p.1773-1782 |
issn | 1110-0168 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_763949d71d854b10aae0dddb456769c5 |
source | ScienceDirect - Connect here FIRST to enable access; IngentaConnect Journals |
subjects | ANFIS ANNs Discharge coefficient Gamma Test Labyrinth weir |
title | Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20discharge%20coefficient%20of%20triangular%20labyrinth%20weirs%20using%20Adaptive%20Neuro%20Fuzzy%20Inference%20System&rft.jtitle=Alexandria%20engineering%20journal&rft.au=Haghiabi,%20Amir%20Hamzeh&rft.date=2018-09&rft.volume=57&rft.issue=3&rft.spage=1773&rft.epage=1782&rft.pages=1773-1782&rft.issn=1110-0168&rft_id=info:doi/10.1016/j.aej.2017.05.005&rft_dat=%3Celsevier_doaj_%3ES1110016817301679%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |