Loading…

Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System

In this paper, the discharge coefficient of triangular labyrinth weir was predicted using multi-layer perceptron (MLP) neural network and Adaptive Neuro Fuzzy Inference System (ANFIS). To this purpose, 223 related dataset were collected. The Gamma Test (GT) was carried out to obtain the most affecti...

Full description

Saved in:
Bibliographic Details
Published in:Alexandria engineering journal 2018-09, Vol.57 (3), p.1773-1782
Main Authors: Haghiabi, Amir Hamzeh, Parsaie, Abbas, Ememgholizadeh, Samad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3
cites cdi_FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3
container_end_page 1782
container_issue 3
container_start_page 1773
container_title Alexandria engineering journal
container_volume 57
creator Haghiabi, Amir Hamzeh
Parsaie, Abbas
Ememgholizadeh, Samad
description In this paper, the discharge coefficient of triangular labyrinth weir was predicted using multi-layer perceptron (MLP) neural network and Adaptive Neuro Fuzzy Inference System (ANFIS). To this purpose, 223 related dataset were collected. The Gamma Test (GT) was carried out to obtain the most affective parameters on the discharge coefficient. The results of the GT indicated that the ratio of length of crest of weir to the main channel width Lw/Wmc, the ratio of length of one cycle to its width (Lc/Wc) and the ratio of total upstream head flow to the weir height H/P are the most important parameters. With regarding to the results of the GT, the structure of ANFIS model was designed. The results of ANFIS model with error indices including coefficient of determination value of 0.97 and root mean square error value of 0.03 was so suitable. Comparison the results of MLP with ANFIS model showed that both models has so suitable performance however the structure of ANFIS model is more optimal.
doi_str_mv 10.1016/j.aej.2017.05.005
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_763949d71d854b10aae0dddb456769c5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1110016817301679</els_id><doaj_id>oai_doaj_org_article_763949d71d854b10aae0dddb456769c5</doaj_id><sourcerecordid>S1110016817301679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3</originalsourceid><addsrcrecordid>eNp9kMFOAjEQhvegiQR5AG99AdZ2u-2y8USIKAlRE_XczLZT6AZ2SVsw8PQWMR6dy0zmz_9n5suyO0ZzRpm8b3PANi8oq3IqckrFVTZgjNFxEic32SiElqYSVV3WcpBt3zwap6PrO9JbYlzQa_ArJLpHa5122MWzEL2DbrXfgCcbaI7edXFNvtD5QPbBdSsyNbCL7oDkBfe-J_P96XQki86ix04jeT-GiNvb7NrCJuDotw-zz_njx-x5vHx9Wsymy7EuqYxjgMI2UnDNi1obKYytQAPWIGtLGVhry4oLjo0pGDdYVmmSjDcTXkAhjOHDbHHJNT20aufdFvxR9eDUz6L3KwU-Or1BVUmeSJiKmYkoG0YBkBpjmlLIStZapCx2ydK-D8Gj_ctjVJ2Rq1Yl5OqMXFGhEtvkebh4MD15cOhVOJPUCbVHHdMV7h_3N7jJjgw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System</title><source>ScienceDirect - Connect here FIRST to enable access</source><source>IngentaConnect Journals</source><creator>Haghiabi, Amir Hamzeh ; Parsaie, Abbas ; Ememgholizadeh, Samad</creator><creatorcontrib>Haghiabi, Amir Hamzeh ; Parsaie, Abbas ; Ememgholizadeh, Samad</creatorcontrib><description>In this paper, the discharge coefficient of triangular labyrinth weir was predicted using multi-layer perceptron (MLP) neural network and Adaptive Neuro Fuzzy Inference System (ANFIS). To this purpose, 223 related dataset were collected. The Gamma Test (GT) was carried out to obtain the most affective parameters on the discharge coefficient. The results of the GT indicated that the ratio of length of crest of weir to the main channel width Lw/Wmc, the ratio of length of one cycle to its width (Lc/Wc) and the ratio of total upstream head flow to the weir height H/P are the most important parameters. With regarding to the results of the GT, the structure of ANFIS model was designed. The results of ANFIS model with error indices including coefficient of determination value of 0.97 and root mean square error value of 0.03 was so suitable. Comparison the results of MLP with ANFIS model showed that both models has so suitable performance however the structure of ANFIS model is more optimal.</description><identifier>ISSN: 1110-0168</identifier><identifier>DOI: 10.1016/j.aej.2017.05.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>ANFIS ; ANNs ; Discharge coefficient ; Gamma Test ; Labyrinth weir</subject><ispartof>Alexandria engineering journal, 2018-09, Vol.57 (3), p.1773-1782</ispartof><rights>2017 Faculty of Engineering, Alexandria University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3</citedby><cites>FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1110016817301679$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Haghiabi, Amir Hamzeh</creatorcontrib><creatorcontrib>Parsaie, Abbas</creatorcontrib><creatorcontrib>Ememgholizadeh, Samad</creatorcontrib><title>Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System</title><title>Alexandria engineering journal</title><description>In this paper, the discharge coefficient of triangular labyrinth weir was predicted using multi-layer perceptron (MLP) neural network and Adaptive Neuro Fuzzy Inference System (ANFIS). To this purpose, 223 related dataset were collected. The Gamma Test (GT) was carried out to obtain the most affective parameters on the discharge coefficient. The results of the GT indicated that the ratio of length of crest of weir to the main channel width Lw/Wmc, the ratio of length of one cycle to its width (Lc/Wc) and the ratio of total upstream head flow to the weir height H/P are the most important parameters. With regarding to the results of the GT, the structure of ANFIS model was designed. The results of ANFIS model with error indices including coefficient of determination value of 0.97 and root mean square error value of 0.03 was so suitable. Comparison the results of MLP with ANFIS model showed that both models has so suitable performance however the structure of ANFIS model is more optimal.</description><subject>ANFIS</subject><subject>ANNs</subject><subject>Discharge coefficient</subject><subject>Gamma Test</subject><subject>Labyrinth weir</subject><issn>1110-0168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kMFOAjEQhvegiQR5AG99AdZ2u-2y8USIKAlRE_XczLZT6AZ2SVsw8PQWMR6dy0zmz_9n5suyO0ZzRpm8b3PANi8oq3IqckrFVTZgjNFxEic32SiElqYSVV3WcpBt3zwap6PrO9JbYlzQa_ArJLpHa5122MWzEL2DbrXfgCcbaI7edXFNvtD5QPbBdSsyNbCL7oDkBfe-J_P96XQki86ix04jeT-GiNvb7NrCJuDotw-zz_njx-x5vHx9Wsymy7EuqYxjgMI2UnDNi1obKYytQAPWIGtLGVhry4oLjo0pGDdYVmmSjDcTXkAhjOHDbHHJNT20aufdFvxR9eDUz6L3KwU-Or1BVUmeSJiKmYkoG0YBkBpjmlLIStZapCx2ydK-D8Gj_ctjVJ2Rq1Yl5OqMXFGhEtvkebh4MD15cOhVOJPUCbVHHdMV7h_3N7jJjgw</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Haghiabi, Amir Hamzeh</creator><creator>Parsaie, Abbas</creator><creator>Ememgholizadeh, Samad</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201809</creationdate><title>Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System</title><author>Haghiabi, Amir Hamzeh ; Parsaie, Abbas ; Ememgholizadeh, Samad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ANFIS</topic><topic>ANNs</topic><topic>Discharge coefficient</topic><topic>Gamma Test</topic><topic>Labyrinth weir</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haghiabi, Amir Hamzeh</creatorcontrib><creatorcontrib>Parsaie, Abbas</creatorcontrib><creatorcontrib>Ememgholizadeh, Samad</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Alexandria engineering journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haghiabi, Amir Hamzeh</au><au>Parsaie, Abbas</au><au>Ememgholizadeh, Samad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System</atitle><jtitle>Alexandria engineering journal</jtitle><date>2018-09</date><risdate>2018</risdate><volume>57</volume><issue>3</issue><spage>1773</spage><epage>1782</epage><pages>1773-1782</pages><issn>1110-0168</issn><abstract>In this paper, the discharge coefficient of triangular labyrinth weir was predicted using multi-layer perceptron (MLP) neural network and Adaptive Neuro Fuzzy Inference System (ANFIS). To this purpose, 223 related dataset were collected. The Gamma Test (GT) was carried out to obtain the most affective parameters on the discharge coefficient. The results of the GT indicated that the ratio of length of crest of weir to the main channel width Lw/Wmc, the ratio of length of one cycle to its width (Lc/Wc) and the ratio of total upstream head flow to the weir height H/P are the most important parameters. With regarding to the results of the GT, the structure of ANFIS model was designed. The results of ANFIS model with error indices including coefficient of determination value of 0.97 and root mean square error value of 0.03 was so suitable. Comparison the results of MLP with ANFIS model showed that both models has so suitable performance however the structure of ANFIS model is more optimal.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.aej.2017.05.005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-0168
ispartof Alexandria engineering journal, 2018-09, Vol.57 (3), p.1773-1782
issn 1110-0168
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_763949d71d854b10aae0dddb456769c5
source ScienceDirect - Connect here FIRST to enable access; IngentaConnect Journals
subjects ANFIS
ANNs
Discharge coefficient
Gamma Test
Labyrinth weir
title Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20discharge%20coefficient%20of%20triangular%20labyrinth%20weirs%20using%20Adaptive%20Neuro%20Fuzzy%20Inference%20System&rft.jtitle=Alexandria%20engineering%20journal&rft.au=Haghiabi,%20Amir%20Hamzeh&rft.date=2018-09&rft.volume=57&rft.issue=3&rft.spage=1773&rft.epage=1782&rft.pages=1773-1782&rft.issn=1110-0168&rft_id=info:doi/10.1016/j.aej.2017.05.005&rft_dat=%3Celsevier_doaj_%3ES1110016817301679%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-aa2fb653c329cd65df7acae9a69f01afff47353ebd213de47ebd613b832a25dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true