Loading…
Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material
This study analyses current density and thermodynamics second law of double reaction of a magneto-Oldroyd 8-constant liquid in a convective asymmetric cooling medium. The viscoelastic properties of the liquid are prevented from distortion by convective cooling of the flow media device which is taken...
Saved in:
Published in: | Journal of King Saud University. Science 2021-05, Vol.33 (3), p.101374, Article 101374 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143 |
container_end_page | |
container_issue | 3 |
container_start_page | 101374 |
container_title | Journal of King Saud University. Science |
container_volume | 33 |
creator | Salawu, S.O. Oderinu, R.A. Ohaegbue, A.D. |
description | This study analyses current density and thermodynamics second law of double reaction of a magneto-Oldroyd 8-constant liquid in a convective asymmetric cooling medium. The viscoelastic properties of the liquid are prevented from distortion by convective cooling of the flow media device which is taken to satisfy Newton’s law of cooling. The flow momentum is motivated by exothermic reaction, chemical kinetics and energized by pressure gradient in the absence of material consumption. The dimensionless leading flow equations are solved using partition weighted residual analytical technique to reveal the parameters sensitivity and impacts on the viscoelastic flow liquid, exothermic combustible heat diffusion, entropy generation and current density. The solution results are presented in tables and graphs for clear understanding of the thermophysical parameters implication on the double reaction fluid considered. As observed, the second step reaction enhances exothermic reaction that in turn support complete combustion process in an engine. An improvement of thermodynamic equilibrium through reducing material terms and Frank-Kamenetskii will minimize the entropy generation and promote thermal engineering machine performance. Current density is augmented by rising second step reaction, electric field loading and activation energy ratio. |
doi_str_mv | 10.1016/j.jksus.2021.101374 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7662b205a8df4873882a92e22655b412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1018364721000355</els_id><doaj_id>oai_doaj_org_article_7662b205a8df4873882a92e22655b412</doaj_id><sourcerecordid>S1018364721000355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143</originalsourceid><addsrcrecordid>eNp9kctu3CAUhr1IpaZJn6AbXsBTbsZ4kUU16iVSpGzSNTqG4wmODREwVd0X6GuXmam67Iqj_-j7AP1N84HRHaNMfZx380s-5h2nnJ0S0cur5roOuhVK9m-bdznPlCotlLpufu-PKWEoxGHIvmwEgiPlGdMa3RZg9bYmsGzZZxInggHTYSPxtfjV_4LiYyBTTMTF47ggwZ_xzFYqIdjzulIrHAKW2D4uLsXNEd3aGHKBeu0KBZOH5bZ5M8GS8f3f86b5_uXz0_5b-_D49X7_6aG1ksnSMkuddV2PvJejhNHySSjHGbNKcmvFKCmHYdBC02EYXCdBSOZEp6S2emJS3DT3F6-LMJvX5FdIm4ngzTmI6WAgFW8XNL1SfOS0A-0mqXuhdVVz5Fx13SgZry5xcdkUc044_fMxak5dmNmcuzCnLsyli0rdXSis3_zhMZlsPQaLzie0pb7D_5f_AwTKl9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>ScienceDirect Journals</source><creator>Salawu, S.O. ; Oderinu, R.A. ; Ohaegbue, A.D.</creator><creatorcontrib>Salawu, S.O. ; Oderinu, R.A. ; Ohaegbue, A.D.</creatorcontrib><description>This study analyses current density and thermodynamics second law of double reaction of a magneto-Oldroyd 8-constant liquid in a convective asymmetric cooling medium. The viscoelastic properties of the liquid are prevented from distortion by convective cooling of the flow media device which is taken to satisfy Newton’s law of cooling. The flow momentum is motivated by exothermic reaction, chemical kinetics and energized by pressure gradient in the absence of material consumption. The dimensionless leading flow equations are solved using partition weighted residual analytical technique to reveal the parameters sensitivity and impacts on the viscoelastic flow liquid, exothermic combustible heat diffusion, entropy generation and current density. The solution results are presented in tables and graphs for clear understanding of the thermophysical parameters implication on the double reaction fluid considered. As observed, the second step reaction enhances exothermic reaction that in turn support complete combustion process in an engine. An improvement of thermodynamic equilibrium through reducing material terms and Frank-Kamenetskii will minimize the entropy generation and promote thermal engineering machine performance. Current density is augmented by rising second step reaction, electric field loading and activation energy ratio.</description><identifier>ISSN: 1018-3647</identifier><identifier>DOI: 10.1016/j.jksus.2021.101374</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Convective cooling ; Current density ; Entropy generation ; Exothermic reaction ; Viscous dissipation</subject><ispartof>Journal of King Saud University. Science, 2021-05, Vol.33 (3), p.101374, Article 101374</ispartof><rights>2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143</citedby><cites>FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1018364721000355$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Salawu, S.O.</creatorcontrib><creatorcontrib>Oderinu, R.A.</creatorcontrib><creatorcontrib>Ohaegbue, A.D.</creatorcontrib><title>Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material</title><title>Journal of King Saud University. Science</title><description>This study analyses current density and thermodynamics second law of double reaction of a magneto-Oldroyd 8-constant liquid in a convective asymmetric cooling medium. The viscoelastic properties of the liquid are prevented from distortion by convective cooling of the flow media device which is taken to satisfy Newton’s law of cooling. The flow momentum is motivated by exothermic reaction, chemical kinetics and energized by pressure gradient in the absence of material consumption. The dimensionless leading flow equations are solved using partition weighted residual analytical technique to reveal the parameters sensitivity and impacts on the viscoelastic flow liquid, exothermic combustible heat diffusion, entropy generation and current density. The solution results are presented in tables and graphs for clear understanding of the thermophysical parameters implication on the double reaction fluid considered. As observed, the second step reaction enhances exothermic reaction that in turn support complete combustion process in an engine. An improvement of thermodynamic equilibrium through reducing material terms and Frank-Kamenetskii will minimize the entropy generation and promote thermal engineering machine performance. Current density is augmented by rising second step reaction, electric field loading and activation energy ratio.</description><subject>Convective cooling</subject><subject>Current density</subject><subject>Entropy generation</subject><subject>Exothermic reaction</subject><subject>Viscous dissipation</subject><issn>1018-3647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctu3CAUhr1IpaZJn6AbXsBTbsZ4kUU16iVSpGzSNTqG4wmODREwVd0X6GuXmam67Iqj_-j7AP1N84HRHaNMfZx380s-5h2nnJ0S0cur5roOuhVK9m-bdznPlCotlLpufu-PKWEoxGHIvmwEgiPlGdMa3RZg9bYmsGzZZxInggHTYSPxtfjV_4LiYyBTTMTF47ggwZ_xzFYqIdjzulIrHAKW2D4uLsXNEd3aGHKBeu0KBZOH5bZ5M8GS8f3f86b5_uXz0_5b-_D49X7_6aG1ksnSMkuddV2PvJejhNHySSjHGbNKcmvFKCmHYdBC02EYXCdBSOZEp6S2emJS3DT3F6-LMJvX5FdIm4ngzTmI6WAgFW8XNL1SfOS0A-0mqXuhdVVz5Fx13SgZry5xcdkUc044_fMxak5dmNmcuzCnLsyli0rdXSis3_zhMZlsPQaLzie0pb7D_5f_AwTKl9w</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Salawu, S.O.</creator><creator>Oderinu, R.A.</creator><creator>Ohaegbue, A.D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202105</creationdate><title>Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material</title><author>Salawu, S.O. ; Oderinu, R.A. ; Ohaegbue, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convective cooling</topic><topic>Current density</topic><topic>Entropy generation</topic><topic>Exothermic reaction</topic><topic>Viscous dissipation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salawu, S.O.</creatorcontrib><creatorcontrib>Oderinu, R.A.</creatorcontrib><creatorcontrib>Ohaegbue, A.D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of King Saud University. Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salawu, S.O.</au><au>Oderinu, R.A.</au><au>Ohaegbue, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material</atitle><jtitle>Journal of King Saud University. Science</jtitle><date>2021-05</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><spage>101374</spage><pages>101374-</pages><artnum>101374</artnum><issn>1018-3647</issn><abstract>This study analyses current density and thermodynamics second law of double reaction of a magneto-Oldroyd 8-constant liquid in a convective asymmetric cooling medium. The viscoelastic properties of the liquid are prevented from distortion by convective cooling of the flow media device which is taken to satisfy Newton’s law of cooling. The flow momentum is motivated by exothermic reaction, chemical kinetics and energized by pressure gradient in the absence of material consumption. The dimensionless leading flow equations are solved using partition weighted residual analytical technique to reveal the parameters sensitivity and impacts on the viscoelastic flow liquid, exothermic combustible heat diffusion, entropy generation and current density. The solution results are presented in tables and graphs for clear understanding of the thermophysical parameters implication on the double reaction fluid considered. As observed, the second step reaction enhances exothermic reaction that in turn support complete combustion process in an engine. An improvement of thermodynamic equilibrium through reducing material terms and Frank-Kamenetskii will minimize the entropy generation and promote thermal engineering machine performance. Current density is augmented by rising second step reaction, electric field loading and activation energy ratio.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jksus.2021.101374</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1018-3647 |
ispartof | Journal of King Saud University. Science, 2021-05, Vol.33 (3), p.101374, Article 101374 |
issn | 1018-3647 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7662b205a8df4873882a92e22655b412 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; ScienceDirect Journals |
subjects | Convective cooling Current density Entropy generation Exothermic reaction Viscous dissipation |
title | Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20density%20and%20thermodynamic%20analysis%20of%20energy%20optimization%20for%20double%20exothermic%20reaction%20of%20magneto-Oldroyd%208-constant%20material&rft.jtitle=Journal%20of%20King%20Saud%20University.%20Science&rft.au=Salawu,%20S.O.&rft.date=2021-05&rft.volume=33&rft.issue=3&rft.spage=101374&rft.pages=101374-&rft.artnum=101374&rft.issn=1018-3647&rft_id=info:doi/10.1016/j.jksus.2021.101374&rft_dat=%3Celsevier_doaj_%3ES1018364721000355%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |