Loading…

Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material

This study analyses current density and thermodynamics second law of double reaction of a magneto-Oldroyd 8-constant liquid in a convective asymmetric cooling medium. The viscoelastic properties of the liquid are prevented from distortion by convective cooling of the flow media device which is taken...

Full description

Saved in:
Bibliographic Details
Published in:Journal of King Saud University. Science 2021-05, Vol.33 (3), p.101374, Article 101374
Main Authors: Salawu, S.O., Oderinu, R.A., Ohaegbue, A.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143
cites cdi_FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143
container_end_page
container_issue 3
container_start_page 101374
container_title Journal of King Saud University. Science
container_volume 33
creator Salawu, S.O.
Oderinu, R.A.
Ohaegbue, A.D.
description This study analyses current density and thermodynamics second law of double reaction of a magneto-Oldroyd 8-constant liquid in a convective asymmetric cooling medium. The viscoelastic properties of the liquid are prevented from distortion by convective cooling of the flow media device which is taken to satisfy Newton’s law of cooling. The flow momentum is motivated by exothermic reaction, chemical kinetics and energized by pressure gradient in the absence of material consumption. The dimensionless leading flow equations are solved using partition weighted residual analytical technique to reveal the parameters sensitivity and impacts on the viscoelastic flow liquid, exothermic combustible heat diffusion, entropy generation and current density. The solution results are presented in tables and graphs for clear understanding of the thermophysical parameters implication on the double reaction fluid considered. As observed, the second step reaction enhances exothermic reaction that in turn support complete combustion process in an engine. An improvement of thermodynamic equilibrium through reducing material terms and Frank-Kamenetskii will minimize the entropy generation and promote thermal engineering machine performance. Current density is augmented by rising second step reaction, electric field loading and activation energy ratio.
doi_str_mv 10.1016/j.jksus.2021.101374
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7662b205a8df4873882a92e22655b412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1018364721000355</els_id><doaj_id>oai_doaj_org_article_7662b205a8df4873882a92e22655b412</doaj_id><sourcerecordid>S1018364721000355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143</originalsourceid><addsrcrecordid>eNp9kctu3CAUhr1IpaZJn6AbXsBTbsZ4kUU16iVSpGzSNTqG4wmODREwVd0X6GuXmam67Iqj_-j7AP1N84HRHaNMfZx380s-5h2nnJ0S0cur5roOuhVK9m-bdznPlCotlLpufu-PKWEoxGHIvmwEgiPlGdMa3RZg9bYmsGzZZxInggHTYSPxtfjV_4LiYyBTTMTF47ggwZ_xzFYqIdjzulIrHAKW2D4uLsXNEd3aGHKBeu0KBZOH5bZ5M8GS8f3f86b5_uXz0_5b-_D49X7_6aG1ksnSMkuddV2PvJejhNHySSjHGbNKcmvFKCmHYdBC02EYXCdBSOZEp6S2emJS3DT3F6-LMJvX5FdIm4ngzTmI6WAgFW8XNL1SfOS0A-0mqXuhdVVz5Fx13SgZry5xcdkUc044_fMxak5dmNmcuzCnLsyli0rdXSis3_zhMZlsPQaLzie0pb7D_5f_AwTKl9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>ScienceDirect Journals</source><creator>Salawu, S.O. ; Oderinu, R.A. ; Ohaegbue, A.D.</creator><creatorcontrib>Salawu, S.O. ; Oderinu, R.A. ; Ohaegbue, A.D.</creatorcontrib><description>This study analyses current density and thermodynamics second law of double reaction of a magneto-Oldroyd 8-constant liquid in a convective asymmetric cooling medium. The viscoelastic properties of the liquid are prevented from distortion by convective cooling of the flow media device which is taken to satisfy Newton’s law of cooling. The flow momentum is motivated by exothermic reaction, chemical kinetics and energized by pressure gradient in the absence of material consumption. The dimensionless leading flow equations are solved using partition weighted residual analytical technique to reveal the parameters sensitivity and impacts on the viscoelastic flow liquid, exothermic combustible heat diffusion, entropy generation and current density. The solution results are presented in tables and graphs for clear understanding of the thermophysical parameters implication on the double reaction fluid considered. As observed, the second step reaction enhances exothermic reaction that in turn support complete combustion process in an engine. An improvement of thermodynamic equilibrium through reducing material terms and Frank-Kamenetskii will minimize the entropy generation and promote thermal engineering machine performance. Current density is augmented by rising second step reaction, electric field loading and activation energy ratio.</description><identifier>ISSN: 1018-3647</identifier><identifier>DOI: 10.1016/j.jksus.2021.101374</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Convective cooling ; Current density ; Entropy generation ; Exothermic reaction ; Viscous dissipation</subject><ispartof>Journal of King Saud University. Science, 2021-05, Vol.33 (3), p.101374, Article 101374</ispartof><rights>2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143</citedby><cites>FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1018364721000355$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Salawu, S.O.</creatorcontrib><creatorcontrib>Oderinu, R.A.</creatorcontrib><creatorcontrib>Ohaegbue, A.D.</creatorcontrib><title>Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material</title><title>Journal of King Saud University. Science</title><description>This study analyses current density and thermodynamics second law of double reaction of a magneto-Oldroyd 8-constant liquid in a convective asymmetric cooling medium. The viscoelastic properties of the liquid are prevented from distortion by convective cooling of the flow media device which is taken to satisfy Newton’s law of cooling. The flow momentum is motivated by exothermic reaction, chemical kinetics and energized by pressure gradient in the absence of material consumption. The dimensionless leading flow equations are solved using partition weighted residual analytical technique to reveal the parameters sensitivity and impacts on the viscoelastic flow liquid, exothermic combustible heat diffusion, entropy generation and current density. The solution results are presented in tables and graphs for clear understanding of the thermophysical parameters implication on the double reaction fluid considered. As observed, the second step reaction enhances exothermic reaction that in turn support complete combustion process in an engine. An improvement of thermodynamic equilibrium through reducing material terms and Frank-Kamenetskii will minimize the entropy generation and promote thermal engineering machine performance. Current density is augmented by rising second step reaction, electric field loading and activation energy ratio.</description><subject>Convective cooling</subject><subject>Current density</subject><subject>Entropy generation</subject><subject>Exothermic reaction</subject><subject>Viscous dissipation</subject><issn>1018-3647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctu3CAUhr1IpaZJn6AbXsBTbsZ4kUU16iVSpGzSNTqG4wmODREwVd0X6GuXmam67Iqj_-j7AP1N84HRHaNMfZx380s-5h2nnJ0S0cur5roOuhVK9m-bdznPlCotlLpufu-PKWEoxGHIvmwEgiPlGdMa3RZg9bYmsGzZZxInggHTYSPxtfjV_4LiYyBTTMTF47ggwZ_xzFYqIdjzulIrHAKW2D4uLsXNEd3aGHKBeu0KBZOH5bZ5M8GS8f3f86b5_uXz0_5b-_D49X7_6aG1ksnSMkuddV2PvJejhNHySSjHGbNKcmvFKCmHYdBC02EYXCdBSOZEp6S2emJS3DT3F6-LMJvX5FdIm4ngzTmI6WAgFW8XNL1SfOS0A-0mqXuhdVVz5Fx13SgZry5xcdkUc044_fMxak5dmNmcuzCnLsyli0rdXSis3_zhMZlsPQaLzie0pb7D_5f_AwTKl9w</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Salawu, S.O.</creator><creator>Oderinu, R.A.</creator><creator>Ohaegbue, A.D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202105</creationdate><title>Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material</title><author>Salawu, S.O. ; Oderinu, R.A. ; Ohaegbue, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convective cooling</topic><topic>Current density</topic><topic>Entropy generation</topic><topic>Exothermic reaction</topic><topic>Viscous dissipation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salawu, S.O.</creatorcontrib><creatorcontrib>Oderinu, R.A.</creatorcontrib><creatorcontrib>Ohaegbue, A.D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of King Saud University. Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salawu, S.O.</au><au>Oderinu, R.A.</au><au>Ohaegbue, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material</atitle><jtitle>Journal of King Saud University. Science</jtitle><date>2021-05</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><spage>101374</spage><pages>101374-</pages><artnum>101374</artnum><issn>1018-3647</issn><abstract>This study analyses current density and thermodynamics second law of double reaction of a magneto-Oldroyd 8-constant liquid in a convective asymmetric cooling medium. The viscoelastic properties of the liquid are prevented from distortion by convective cooling of the flow media device which is taken to satisfy Newton’s law of cooling. The flow momentum is motivated by exothermic reaction, chemical kinetics and energized by pressure gradient in the absence of material consumption. The dimensionless leading flow equations are solved using partition weighted residual analytical technique to reveal the parameters sensitivity and impacts on the viscoelastic flow liquid, exothermic combustible heat diffusion, entropy generation and current density. The solution results are presented in tables and graphs for clear understanding of the thermophysical parameters implication on the double reaction fluid considered. As observed, the second step reaction enhances exothermic reaction that in turn support complete combustion process in an engine. An improvement of thermodynamic equilibrium through reducing material terms and Frank-Kamenetskii will minimize the entropy generation and promote thermal engineering machine performance. Current density is augmented by rising second step reaction, electric field loading and activation energy ratio.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jksus.2021.101374</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1018-3647
ispartof Journal of King Saud University. Science, 2021-05, Vol.33 (3), p.101374, Article 101374
issn 1018-3647
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7662b205a8df4873882a92e22655b412
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; ScienceDirect Journals
subjects Convective cooling
Current density
Entropy generation
Exothermic reaction
Viscous dissipation
title Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20density%20and%20thermodynamic%20analysis%20of%20energy%20optimization%20for%20double%20exothermic%20reaction%20of%20magneto-Oldroyd%208-constant%20material&rft.jtitle=Journal%20of%20King%20Saud%20University.%20Science&rft.au=Salawu,%20S.O.&rft.date=2021-05&rft.volume=33&rft.issue=3&rft.spage=101374&rft.pages=101374-&rft.artnum=101374&rft.issn=1018-3647&rft_id=info:doi/10.1016/j.jksus.2021.101374&rft_dat=%3Celsevier_doaj_%3ES1018364721000355%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-1c0dcd57e274b4abc2f36d211c642cc3b402a998380999d54a341d35648c8f143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true