Loading…

Suppression of joint pain in transient receptor potential vanilloid 4 knockout rats with monoiodoacetate-induced osteoarthritis

INTRODUCTIONTransient receptor potential vanilloid 4 (TRPV4) modulates osteoarthritic (OA) pain in animal models. However, the pathophysiological function of TRPV4 in regulating OA pain remains poorly understood. METHODSWe developed TRPV4-knockout (TRPV4-KO) rats and assessed the effects of Trpv4 ge...

Full description

Saved in:
Bibliographic Details
Published in:Pain reports 2021-09, Vol.6 (3), p.e951-e951
Main Authors: Soga, Masahiko, Izumi, Takaya, Nanchi, Isamu, Horita, Narumi, Yamamoto, Miyuki, Kawasaki, Shiori, Ogawa, Koichi, Fujita, Masahide, Morioka, Yasuhide
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:INTRODUCTIONTransient receptor potential vanilloid 4 (TRPV4) modulates osteoarthritic (OA) pain in animal models. However, the pathophysiological function of TRPV4 in regulating OA pain remains poorly understood. METHODSWe developed TRPV4-knockout (TRPV4-KO) rats and assessed the effects of Trpv4 gene deficiency in a monoiodoacetate (MIA)-induced OA pain model (MIA rats) by examining pain-related behavior, pathological changes, and electrophysiological changes in dorsal root ganglion (DRG) neurons. The changes detected in TRPV4-KO rats were confirmed in wild-type rats using a TRPV4 antagonist. RESULTSTransient receptor potential vanilloid 4-KO rats showed the same pain threshold as wild-type rats for thermal or pressure stimuli under normal conditions. Trpv4 gene deletion did not suppress the development of osteoarthritis pathologically in MIA rats. However, the OA-related mechanical pain behaviors observed in MIA rats, including decreased grip strength, increased mechanical allodynia, and reduced weight-bearing on the ipsilateral side, were completely suppressed in TRPV4-KO rats. The DRG neurons in wild-type but not TRPV4-KO MIA rats were depolarized with increased action potentials. Transient receptor potential vanilloid 4 antagonist treatments recapitulated the effects of genetic Trpv4 deletion. CONCLUSIONTransient receptor potential vanilloid 4 was sensitized in the DRG neurons of MIA rats and played a critical role in the development of OA pain. These results suggest that the inhibition of TRPV4 might be a novel potent analgesic strategy for treating OA pain.
ISSN:2471-2531
2471-2531
DOI:10.1097/PR9.0000000000000951