Loading…

Enhanced Chemical Stability of Tetramethylammonium Head Groups via Deep Eutectic Solvent: A Computational Study

The chemical stability of tetramethylammonium (TMA) head groups, both with and without the presence of a choline chloride and ethylene glycol-based deep eutectic solvent (DES), was studied using Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations. DFT calculations of...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2024-10, Vol.29 (20), p.4869
Main Authors: Karibayev, Mirat, Myrzakhmetov, Bauyrzhan, Wang, Yanwei, Mentbayeva, Almagul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The chemical stability of tetramethylammonium (TMA) head groups, both with and without the presence of a choline chloride and ethylene glycol-based deep eutectic solvent (DES), was studied using Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations. DFT calculations of transition state energetics (ΔEreaction, ΔGreaction, ΔEactivation, and ΔGactivation) for key degradation mechanisms, ylide formation (YF) and nucleophilic substitution (SN2), suggested that the presence of DES enhances the stability of the TMA head groups compared to systems without DES. MD simulations across hydration levels (HLs) 1 to 5 indicated that without DES, YF dominates at lower HLs, while SN2 does not occur. In contrast, both mechanisms are suppressed in the presence of DES. Temperature also plays a role: without DES, YF dominates at 298 K, while SN2 becomes prominent at 320 K and 350 K. With DES, both degradation mechanisms are inhibited. These findings suggest DES could improve the chemical stability of TMA head groups in anion exchange membranes.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29204869