Loading…
Identification and Validation of a Diagnostic and Prognostic Multi-Gene Biomarker Panel for Pancreatic Ductal Adenocarcinoma
Late diagnosis and systemic dissemination essentially contribute to the invariably poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Therefore, the development of diagnostic biomarkers for PDAC are urgently needed to improve patient stratification and outcome in the clinic. By studying the...
Saved in:
Published in: | Frontiers in genetics 2018-04, Vol.9, p.108-108 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-c997135c6d22a380d03e79cb966380a282a26342cff50bb386f8aa4467ea344e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-c997135c6d22a380d03e79cb966380a282a26342cff50bb386f8aa4467ea344e3 |
container_end_page | 108 |
container_issue | |
container_start_page | 108 |
container_title | Frontiers in genetics |
container_volume | 9 |
creator | Klett, Hagen Fuellgraf, Hannah Levit-Zerdoun, Ella Hussung, Saskia Kowar, Silke Küsters, Simon Bronsert, Peter Werner, Martin Wittel, Uwe Fritsch, Ralph Busch, Hauke Boerries, Melanie |
description | Late diagnosis and systemic dissemination essentially contribute to the invariably poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Therefore, the development of diagnostic biomarkers for PDAC are urgently needed to improve patient stratification and outcome in the clinic. By studying the transcriptomes of independent PDAC patient cohorts of tumor and non-tumor tissues, we identified 81 robustly regulated genes, through a novel, generally applicable meta-analysis. Using consensus clustering on co-expression values revealed four distinct clusters with genes originating from exocrine/endocrine pancreas, stromal and tumor cells. Three clusters were strongly associated with survival of PDAC patients based on TCGA database underlining the prognostic potential of the identified genes. With the added information of impact of survival and the robustness within the meta-analysis, we extracted a 17-gene subset for further validation. We show that it did not only discriminate PDAC from non-tumor tissue and stroma in fresh-frozen as well as formalin-fixed paraffin embedded samples, but also detected pancreatic precursor lesions and singled out pancreatitis samples. Moreover, the classifier discriminated PDAC from other cancers in the TCGA database. In addition, we experimentally validated the classifier in PDAC patients on transcript level using qPCR and exemplify the usage on protein level for three proteins (AHNAK2, LAMC2, TFF1) using immunohistochemistry and for two secreted proteins (TFF1, SERPINB5) using ELISA-based protein detection in blood-plasma. In conclusion, we present a novel robust diagnostic and prognostic gene signature for PDAC with future potential applicability in the clinic. |
doi_str_mv | 10.3389/fgene.2018.00108 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7676b7b973824581a3fe81105ce3ebeb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7676b7b973824581a3fe81105ce3ebeb</doaj_id><sourcerecordid>2028953178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-c997135c6d22a380d03e79cb966380a282a26342cff50bb386f8aa4467ea344e3</originalsourceid><addsrcrecordid>eNpVUsFu1DAQjRCIVqV3TihHLllsj2M7F6TSQlmpiB5artbEGS8u2bg4CVKlfjzebFu1vnjG8-bN0_gVxXvOVgCm-eQ3NNBKMG5WjHFmXhWHXClZGSb462fxQXE8jjcsH9kAgHxbHIhG6ZoBHBb3646GKfjgcApxKHHoyl_Yh26fRl9ieRZwM8RxCm4pX6b4mP6Y-ylU51lH-SXELaY_lMpLHKgvfVwilwh3yLPZTdiXJ3ladJhcGDL8XfHGYz_S8cN9VFx_-3p1-r26-Hm-Pj25qJxUYqpc02gOtVOdEAiGdQxIN65tlMoZCiNQKJDCeV-ztgWjvEGUUmlCkJLgqFjvebuIN_Y2haz0zkYMdnmIaWMxZZU9Wa20anXbaDBC1oYjeDKcs9oRUEtt5vq857qd2y11Lm8vYf-C9GVlCL_tJv6ztWlqDTwTfHwgSPHvTONkt2F01Pd5bXEerWAiI4Frk6FsD3UpjmMi_zSGM7vzgF08YHcesIsHcsuH5_KeGh5_HP4D86yvFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2028953178</pqid></control><display><type>article</type><title>Identification and Validation of a Diagnostic and Prognostic Multi-Gene Biomarker Panel for Pancreatic Ductal Adenocarcinoma</title><source>PubMed Central</source><creator>Klett, Hagen ; Fuellgraf, Hannah ; Levit-Zerdoun, Ella ; Hussung, Saskia ; Kowar, Silke ; Küsters, Simon ; Bronsert, Peter ; Werner, Martin ; Wittel, Uwe ; Fritsch, Ralph ; Busch, Hauke ; Boerries, Melanie</creator><creatorcontrib>Klett, Hagen ; Fuellgraf, Hannah ; Levit-Zerdoun, Ella ; Hussung, Saskia ; Kowar, Silke ; Küsters, Simon ; Bronsert, Peter ; Werner, Martin ; Wittel, Uwe ; Fritsch, Ralph ; Busch, Hauke ; Boerries, Melanie</creatorcontrib><description>Late diagnosis and systemic dissemination essentially contribute to the invariably poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Therefore, the development of diagnostic biomarkers for PDAC are urgently needed to improve patient stratification and outcome in the clinic. By studying the transcriptomes of independent PDAC patient cohorts of tumor and non-tumor tissues, we identified 81 robustly regulated genes, through a novel, generally applicable meta-analysis. Using consensus clustering on co-expression values revealed four distinct clusters with genes originating from exocrine/endocrine pancreas, stromal and tumor cells. Three clusters were strongly associated with survival of PDAC patients based on TCGA database underlining the prognostic potential of the identified genes. With the added information of impact of survival and the robustness within the meta-analysis, we extracted a 17-gene subset for further validation. We show that it did not only discriminate PDAC from non-tumor tissue and stroma in fresh-frozen as well as formalin-fixed paraffin embedded samples, but also detected pancreatic precursor lesions and singled out pancreatitis samples. Moreover, the classifier discriminated PDAC from other cancers in the TCGA database. In addition, we experimentally validated the classifier in PDAC patients on transcript level using qPCR and exemplify the usage on protein level for three proteins (AHNAK2, LAMC2, TFF1) using immunohistochemistry and for two secreted proteins (TFF1, SERPINB5) using ELISA-based protein detection in blood-plasma. In conclusion, we present a novel robust diagnostic and prognostic gene signature for PDAC with future potential applicability in the clinic.</description><identifier>ISSN: 1664-8021</identifier><identifier>EISSN: 1664-8021</identifier><identifier>DOI: 10.3389/fgene.2018.00108</identifier><identifier>PMID: 29675033</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>biomarker ; Genetics ; liquid biopsy ; meta-analysis ; pancreatic precursor lesions ; PDAC ; survival</subject><ispartof>Frontiers in genetics, 2018-04, Vol.9, p.108-108</ispartof><rights>Copyright © 2018 Klett, Fuellgraf, Levit-Zerdoun, Hussung, Kowar, Küsters, Bronsert, Werner, Wittel, Fritsch, Busch and Boerries. 2018 Klett, Fuellgraf, Levit-Zerdoun, Hussung, Kowar, Küsters, Bronsert, Werner, Wittel, Fritsch, Busch and Boerries</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-c997135c6d22a380d03e79cb966380a282a26342cff50bb386f8aa4467ea344e3</citedby><cites>FETCH-LOGICAL-c462t-c997135c6d22a380d03e79cb966380a282a26342cff50bb386f8aa4467ea344e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895731/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895731/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29675033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klett, Hagen</creatorcontrib><creatorcontrib>Fuellgraf, Hannah</creatorcontrib><creatorcontrib>Levit-Zerdoun, Ella</creatorcontrib><creatorcontrib>Hussung, Saskia</creatorcontrib><creatorcontrib>Kowar, Silke</creatorcontrib><creatorcontrib>Küsters, Simon</creatorcontrib><creatorcontrib>Bronsert, Peter</creatorcontrib><creatorcontrib>Werner, Martin</creatorcontrib><creatorcontrib>Wittel, Uwe</creatorcontrib><creatorcontrib>Fritsch, Ralph</creatorcontrib><creatorcontrib>Busch, Hauke</creatorcontrib><creatorcontrib>Boerries, Melanie</creatorcontrib><title>Identification and Validation of a Diagnostic and Prognostic Multi-Gene Biomarker Panel for Pancreatic Ductal Adenocarcinoma</title><title>Frontiers in genetics</title><addtitle>Front Genet</addtitle><description>Late diagnosis and systemic dissemination essentially contribute to the invariably poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Therefore, the development of diagnostic biomarkers for PDAC are urgently needed to improve patient stratification and outcome in the clinic. By studying the transcriptomes of independent PDAC patient cohorts of tumor and non-tumor tissues, we identified 81 robustly regulated genes, through a novel, generally applicable meta-analysis. Using consensus clustering on co-expression values revealed four distinct clusters with genes originating from exocrine/endocrine pancreas, stromal and tumor cells. Three clusters were strongly associated with survival of PDAC patients based on TCGA database underlining the prognostic potential of the identified genes. With the added information of impact of survival and the robustness within the meta-analysis, we extracted a 17-gene subset for further validation. We show that it did not only discriminate PDAC from non-tumor tissue and stroma in fresh-frozen as well as formalin-fixed paraffin embedded samples, but also detected pancreatic precursor lesions and singled out pancreatitis samples. Moreover, the classifier discriminated PDAC from other cancers in the TCGA database. In addition, we experimentally validated the classifier in PDAC patients on transcript level using qPCR and exemplify the usage on protein level for three proteins (AHNAK2, LAMC2, TFF1) using immunohistochemistry and for two secreted proteins (TFF1, SERPINB5) using ELISA-based protein detection in blood-plasma. In conclusion, we present a novel robust diagnostic and prognostic gene signature for PDAC with future potential applicability in the clinic.</description><subject>biomarker</subject><subject>Genetics</subject><subject>liquid biopsy</subject><subject>meta-analysis</subject><subject>pancreatic precursor lesions</subject><subject>PDAC</subject><subject>survival</subject><issn>1664-8021</issn><issn>1664-8021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUsFu1DAQjRCIVqV3TihHLllsj2M7F6TSQlmpiB5artbEGS8u2bg4CVKlfjzebFu1vnjG8-bN0_gVxXvOVgCm-eQ3NNBKMG5WjHFmXhWHXClZGSb462fxQXE8jjcsH9kAgHxbHIhG6ZoBHBb3646GKfjgcApxKHHoyl_Yh26fRl9ieRZwM8RxCm4pX6b4mP6Y-ylU51lH-SXELaY_lMpLHKgvfVwilwh3yLPZTdiXJ3ladJhcGDL8XfHGYz_S8cN9VFx_-3p1-r26-Hm-Pj25qJxUYqpc02gOtVOdEAiGdQxIN65tlMoZCiNQKJDCeV-ztgWjvEGUUmlCkJLgqFjvebuIN_Y2haz0zkYMdnmIaWMxZZU9Wa20anXbaDBC1oYjeDKcs9oRUEtt5vq857qd2y11Lm8vYf-C9GVlCL_tJv6ztWlqDTwTfHwgSPHvTONkt2F01Pd5bXEerWAiI4Frk6FsD3UpjmMi_zSGM7vzgF08YHcesIsHcsuH5_KeGh5_HP4D86yvFQ</recordid><startdate>20180405</startdate><enddate>20180405</enddate><creator>Klett, Hagen</creator><creator>Fuellgraf, Hannah</creator><creator>Levit-Zerdoun, Ella</creator><creator>Hussung, Saskia</creator><creator>Kowar, Silke</creator><creator>Küsters, Simon</creator><creator>Bronsert, Peter</creator><creator>Werner, Martin</creator><creator>Wittel, Uwe</creator><creator>Fritsch, Ralph</creator><creator>Busch, Hauke</creator><creator>Boerries, Melanie</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180405</creationdate><title>Identification and Validation of a Diagnostic and Prognostic Multi-Gene Biomarker Panel for Pancreatic Ductal Adenocarcinoma</title><author>Klett, Hagen ; Fuellgraf, Hannah ; Levit-Zerdoun, Ella ; Hussung, Saskia ; Kowar, Silke ; Küsters, Simon ; Bronsert, Peter ; Werner, Martin ; Wittel, Uwe ; Fritsch, Ralph ; Busch, Hauke ; Boerries, Melanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-c997135c6d22a380d03e79cb966380a282a26342cff50bb386f8aa4467ea344e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>biomarker</topic><topic>Genetics</topic><topic>liquid biopsy</topic><topic>meta-analysis</topic><topic>pancreatic precursor lesions</topic><topic>PDAC</topic><topic>survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klett, Hagen</creatorcontrib><creatorcontrib>Fuellgraf, Hannah</creatorcontrib><creatorcontrib>Levit-Zerdoun, Ella</creatorcontrib><creatorcontrib>Hussung, Saskia</creatorcontrib><creatorcontrib>Kowar, Silke</creatorcontrib><creatorcontrib>Küsters, Simon</creatorcontrib><creatorcontrib>Bronsert, Peter</creatorcontrib><creatorcontrib>Werner, Martin</creatorcontrib><creatorcontrib>Wittel, Uwe</creatorcontrib><creatorcontrib>Fritsch, Ralph</creatorcontrib><creatorcontrib>Busch, Hauke</creatorcontrib><creatorcontrib>Boerries, Melanie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klett, Hagen</au><au>Fuellgraf, Hannah</au><au>Levit-Zerdoun, Ella</au><au>Hussung, Saskia</au><au>Kowar, Silke</au><au>Küsters, Simon</au><au>Bronsert, Peter</au><au>Werner, Martin</au><au>Wittel, Uwe</au><au>Fritsch, Ralph</au><au>Busch, Hauke</au><au>Boerries, Melanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and Validation of a Diagnostic and Prognostic Multi-Gene Biomarker Panel for Pancreatic Ductal Adenocarcinoma</atitle><jtitle>Frontiers in genetics</jtitle><addtitle>Front Genet</addtitle><date>2018-04-05</date><risdate>2018</risdate><volume>9</volume><spage>108</spage><epage>108</epage><pages>108-108</pages><issn>1664-8021</issn><eissn>1664-8021</eissn><abstract>Late diagnosis and systemic dissemination essentially contribute to the invariably poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Therefore, the development of diagnostic biomarkers for PDAC are urgently needed to improve patient stratification and outcome in the clinic. By studying the transcriptomes of independent PDAC patient cohorts of tumor and non-tumor tissues, we identified 81 robustly regulated genes, through a novel, generally applicable meta-analysis. Using consensus clustering on co-expression values revealed four distinct clusters with genes originating from exocrine/endocrine pancreas, stromal and tumor cells. Three clusters were strongly associated with survival of PDAC patients based on TCGA database underlining the prognostic potential of the identified genes. With the added information of impact of survival and the robustness within the meta-analysis, we extracted a 17-gene subset for further validation. We show that it did not only discriminate PDAC from non-tumor tissue and stroma in fresh-frozen as well as formalin-fixed paraffin embedded samples, but also detected pancreatic precursor lesions and singled out pancreatitis samples. Moreover, the classifier discriminated PDAC from other cancers in the TCGA database. In addition, we experimentally validated the classifier in PDAC patients on transcript level using qPCR and exemplify the usage on protein level for three proteins (AHNAK2, LAMC2, TFF1) using immunohistochemistry and for two secreted proteins (TFF1, SERPINB5) using ELISA-based protein detection in blood-plasma. In conclusion, we present a novel robust diagnostic and prognostic gene signature for PDAC with future potential applicability in the clinic.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>29675033</pmid><doi>10.3389/fgene.2018.00108</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-8021 |
ispartof | Frontiers in genetics, 2018-04, Vol.9, p.108-108 |
issn | 1664-8021 1664-8021 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7676b7b973824581a3fe81105ce3ebeb |
source | PubMed Central |
subjects | biomarker Genetics liquid biopsy meta-analysis pancreatic precursor lesions PDAC survival |
title | Identification and Validation of a Diagnostic and Prognostic Multi-Gene Biomarker Panel for Pancreatic Ductal Adenocarcinoma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20Validation%20of%20a%20Diagnostic%20and%20Prognostic%20Multi-Gene%20Biomarker%20Panel%20for%20Pancreatic%20Ductal%20Adenocarcinoma&rft.jtitle=Frontiers%20in%20genetics&rft.au=Klett,%20Hagen&rft.date=2018-04-05&rft.volume=9&rft.spage=108&rft.epage=108&rft.pages=108-108&rft.issn=1664-8021&rft.eissn=1664-8021&rft_id=info:doi/10.3389/fgene.2018.00108&rft_dat=%3Cproquest_doaj_%3E2028953178%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-c997135c6d22a380d03e79cb966380a282a26342cff50bb386f8aa4467ea344e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2028953178&rft_id=info:pmid/29675033&rfr_iscdi=true |