Loading…

Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets

Classification of data points which correspond to complex entities such as people or journal articles is a ongoing research task. Notable applications are recommendation systems for customer behaviors based upon their features or past purchases and in academia labeling relevant research papers in or...

Full description

Saved in:
Bibliographic Details
Published in:Journal of big data 2020-10, Vol.7 (1), p.1-17, Article 91
Main Authors: Pho, Phuong, Mantzaris, Alexander V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703
cites cdi_FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703
container_end_page 17
container_issue 1
container_start_page 1
container_title Journal of big data
container_volume 7
creator Pho, Phuong
Mantzaris, Alexander V.
description Classification of data points which correspond to complex entities such as people or journal articles is a ongoing research task. Notable applications are recommendation systems for customer behaviors based upon their features or past purchases and in academia labeling relevant research papers in order to reduce the reading time required. The features that can be extracted are many and result in large datasets which are a challenge to process with complex machine learning methodologies. There is also an issue on how this is presented and how to interpret the parameterizations beyond the classification accuracies. This work shows how the network information contained in an adjacency matrix allows improved classification of entities through their associations and how the framework of the SGC provide an expressive and fast approach. The proposed regularized SGC incorporates shrinkage upon three different aspects of the projection vectors to reduce the number of parameters, the size of the parameters and the directions between the vectors to produce more meaningful interpretations.
doi_str_mv 10.1186/s40537-020-00366-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76784c218a0b4cd3a27f302d96d702cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76784c218a0b4cd3a27f302d96d702cb</doaj_id><sourcerecordid>2471555946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703</originalsourceid><addsrcrecordid>eNp9kU1LAzEURQdRUKp_wFXAjS5G8zL5mFlK0VooCH5s3ITMJFNTppOapKX11xsdUVeuEsK5J-9xs-wU8CVAya8CxawQOSY4x7jgPN_uZUcEKp4DANv_cz_MTkJYYIyhSBlOj7KXBzNfd8rbd6PRo12uOoMmXq1e0dj1G9eto3U9On-cjC9Q6zxKhHebxNo-Gr_yJqradjbukGtR8swN0iqqYGI4zg5a1QVz8n2Osufbm6fxXT67n0zH17O8obyMeVNjrctaAdElMDCsVlVBmOBtIwADZYYqyivWKtKKShsGJM0vuCYk7SBwMcqmg1c7tZArb5fK76RTVn49OD-XykfbdEYKLkraECgVrmmjC0VEW2CiK64FJk2dXGeDK235tjYhyoVb-z6NLwkVwBirKE8UGajGuxC8aX9-BSw_K5FDJTJVIr8qkdsUKoZQSHA_N_5X_U_qA8Tbja0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471555946</pqid></control><display><type>article</type><title>Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets</title><source>Publicly Available Content Database</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Pho, Phuong ; Mantzaris, Alexander V.</creator><creatorcontrib>Pho, Phuong ; Mantzaris, Alexander V.</creatorcontrib><description>Classification of data points which correspond to complex entities such as people or journal articles is a ongoing research task. Notable applications are recommendation systems for customer behaviors based upon their features or past purchases and in academia labeling relevant research papers in order to reduce the reading time required. The features that can be extracted are many and result in large datasets which are a challenge to process with complex machine learning methodologies. There is also an issue on how this is presented and how to interpret the parameterizations beyond the classification accuracies. This work shows how the network information contained in an adjacency matrix allows improved classification of entities through their associations and how the framework of the SGC provide an expressive and fast approach. The proposed regularized SGC incorporates shrinkage upon three different aspects of the projection vectors to reduce the number of parameters, the size of the parameters and the directions between the vectors to produce more meaningful interpretations.</description><identifier>ISSN: 2196-1115</identifier><identifier>EISSN: 2196-1115</identifier><identifier>DOI: 10.1186/s40537-020-00366-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Big Data ; Classification ; Communications Engineering ; Computational Science and Engineering ; Computer Science ; Convolution ; Data Mining and Knowledge Discovery ; Data points ; Database Management ; Datasets ; Dimensionality reduction ; Feature extraction ; Graph Convolutional Network ; Graph neural networks ; Information Storage and Retrieval ; Interpretability ; Machine learning ; Mathematical Applications in Computer Science ; Network topologies ; Networks ; Neural networks ; Parameters ; Predictive analytics ; Recommender systems ; Scientific papers ; Simple Graph Convolution ; Social networks</subject><ispartof>Journal of big data, 2020-10, Vol.7 (1), p.1-17, Article 91</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703</citedby><cites>FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703</cites><orcidid>0000-0002-0026-5725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2471555946?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,21394,25753,27924,27925,33611,36060,37012,43733,44363,44590</link.rule.ids></links><search><creatorcontrib>Pho, Phuong</creatorcontrib><creatorcontrib>Mantzaris, Alexander V.</creatorcontrib><title>Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets</title><title>Journal of big data</title><addtitle>J Big Data</addtitle><description>Classification of data points which correspond to complex entities such as people or journal articles is a ongoing research task. Notable applications are recommendation systems for customer behaviors based upon their features or past purchases and in academia labeling relevant research papers in order to reduce the reading time required. The features that can be extracted are many and result in large datasets which are a challenge to process with complex machine learning methodologies. There is also an issue on how this is presented and how to interpret the parameterizations beyond the classification accuracies. This work shows how the network information contained in an adjacency matrix allows improved classification of entities through their associations and how the framework of the SGC provide an expressive and fast approach. The proposed regularized SGC incorporates shrinkage upon three different aspects of the projection vectors to reduce the number of parameters, the size of the parameters and the directions between the vectors to produce more meaningful interpretations.</description><subject>Big Data</subject><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data points</subject><subject>Database Management</subject><subject>Datasets</subject><subject>Dimensionality reduction</subject><subject>Feature extraction</subject><subject>Graph Convolutional Network</subject><subject>Graph neural networks</subject><subject>Information Storage and Retrieval</subject><subject>Interpretability</subject><subject>Machine learning</subject><subject>Mathematical Applications in Computer Science</subject><subject>Network topologies</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Predictive analytics</subject><subject>Recommender systems</subject><subject>Scientific papers</subject><subject>Simple Graph Convolution</subject><subject>Social networks</subject><issn>2196-1115</issn><issn>2196-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1LAzEURQdRUKp_wFXAjS5G8zL5mFlK0VooCH5s3ITMJFNTppOapKX11xsdUVeuEsK5J-9xs-wU8CVAya8CxawQOSY4x7jgPN_uZUcEKp4DANv_cz_MTkJYYIyhSBlOj7KXBzNfd8rbd6PRo12uOoMmXq1e0dj1G9eto3U9On-cjC9Q6zxKhHebxNo-Gr_yJqradjbukGtR8swN0iqqYGI4zg5a1QVz8n2Osufbm6fxXT67n0zH17O8obyMeVNjrctaAdElMDCsVlVBmOBtIwADZYYqyivWKtKKShsGJM0vuCYk7SBwMcqmg1c7tZArb5fK76RTVn49OD-XykfbdEYKLkraECgVrmmjC0VEW2CiK64FJk2dXGeDK235tjYhyoVb-z6NLwkVwBirKE8UGajGuxC8aX9-BSw_K5FDJTJVIr8qkdsUKoZQSHA_N_5X_U_qA8Tbja0</recordid><startdate>20201020</startdate><enddate>20201020</enddate><creator>Pho, Phuong</creator><creator>Mantzaris, Alexander V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0026-5725</orcidid></search><sort><creationdate>20201020</creationdate><title>Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets</title><author>Pho, Phuong ; Mantzaris, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Big Data</topic><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data points</topic><topic>Database Management</topic><topic>Datasets</topic><topic>Dimensionality reduction</topic><topic>Feature extraction</topic><topic>Graph Convolutional Network</topic><topic>Graph neural networks</topic><topic>Information Storage and Retrieval</topic><topic>Interpretability</topic><topic>Machine learning</topic><topic>Mathematical Applications in Computer Science</topic><topic>Network topologies</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Predictive analytics</topic><topic>Recommender systems</topic><topic>Scientific papers</topic><topic>Simple Graph Convolution</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pho, Phuong</creatorcontrib><creatorcontrib>Mantzaris, Alexander V.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pho, Phuong</au><au>Mantzaris, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets</atitle><jtitle>Journal of big data</jtitle><stitle>J Big Data</stitle><date>2020-10-20</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>91</artnum><issn>2196-1115</issn><eissn>2196-1115</eissn><abstract>Classification of data points which correspond to complex entities such as people or journal articles is a ongoing research task. Notable applications are recommendation systems for customer behaviors based upon their features or past purchases and in academia labeling relevant research papers in order to reduce the reading time required. The features that can be extracted are many and result in large datasets which are a challenge to process with complex machine learning methodologies. There is also an issue on how this is presented and how to interpret the parameterizations beyond the classification accuracies. This work shows how the network information contained in an adjacency matrix allows improved classification of entities through their associations and how the framework of the SGC provide an expressive and fast approach. The proposed regularized SGC incorporates shrinkage upon three different aspects of the projection vectors to reduce the number of parameters, the size of the parameters and the directions between the vectors to produce more meaningful interpretations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40537-020-00366-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0026-5725</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-1115
ispartof Journal of big data, 2020-10, Vol.7 (1), p.1-17, Article 91
issn 2196-1115
2196-1115
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_76784c218a0b4cd3a27f302d96d702cb
source Publicly Available Content Database; Social Science Premium Collection; ABI/INFORM Global; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Big Data
Classification
Communications Engineering
Computational Science and Engineering
Computer Science
Convolution
Data Mining and Knowledge Discovery
Data points
Database Management
Datasets
Dimensionality reduction
Feature extraction
Graph Convolutional Network
Graph neural networks
Information Storage and Retrieval
Interpretability
Machine learning
Mathematical Applications in Computer Science
Network topologies
Networks
Neural networks
Parameters
Predictive analytics
Recommender systems
Scientific papers
Simple Graph Convolution
Social networks
title Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20Simple%20Graph%20Convolution%20(SGC)%20for%20improved%20interpretability%20of%20large%20datasets&rft.jtitle=Journal%20of%20big%20data&rft.au=Pho,%20Phuong&rft.date=2020-10-20&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=91&rft.issn=2196-1115&rft.eissn=2196-1115&rft_id=info:doi/10.1186/s40537-020-00366-x&rft_dat=%3Cproquest_doaj_%3E2471555946%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471555946&rft_id=info:pmid/&rfr_iscdi=true