Loading…
Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets
Classification of data points which correspond to complex entities such as people or journal articles is a ongoing research task. Notable applications are recommendation systems for customer behaviors based upon their features or past purchases and in academia labeling relevant research papers in or...
Saved in:
Published in: | Journal of big data 2020-10, Vol.7 (1), p.1-17, Article 91 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703 |
container_end_page | 17 |
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of big data |
container_volume | 7 |
creator | Pho, Phuong Mantzaris, Alexander V. |
description | Classification of data points which correspond to complex entities such as people or journal articles is a ongoing research task. Notable applications are recommendation systems for customer behaviors based upon their features or past purchases and in academia labeling relevant research papers in order to reduce the reading time required. The features that can be extracted are many and result in large datasets which are a challenge to process with complex machine learning methodologies. There is also an issue on how this is presented and how to interpret the parameterizations beyond the classification accuracies. This work shows how the network information contained in an adjacency matrix allows improved classification of entities through their associations and how the framework of the SGC provide an expressive and fast approach. The proposed regularized SGC incorporates shrinkage upon three different aspects of the projection vectors to reduce the number of parameters, the size of the parameters and the directions between the vectors to produce more meaningful interpretations. |
doi_str_mv | 10.1186/s40537-020-00366-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76784c218a0b4cd3a27f302d96d702cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76784c218a0b4cd3a27f302d96d702cb</doaj_id><sourcerecordid>2471555946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703</originalsourceid><addsrcrecordid>eNp9kU1LAzEURQdRUKp_wFXAjS5G8zL5mFlK0VooCH5s3ITMJFNTppOapKX11xsdUVeuEsK5J-9xs-wU8CVAya8CxawQOSY4x7jgPN_uZUcEKp4DANv_cz_MTkJYYIyhSBlOj7KXBzNfd8rbd6PRo12uOoMmXq1e0dj1G9eto3U9On-cjC9Q6zxKhHebxNo-Gr_yJqradjbukGtR8swN0iqqYGI4zg5a1QVz8n2Osufbm6fxXT67n0zH17O8obyMeVNjrctaAdElMDCsVlVBmOBtIwADZYYqyivWKtKKShsGJM0vuCYk7SBwMcqmg1c7tZArb5fK76RTVn49OD-XykfbdEYKLkraECgVrmmjC0VEW2CiK64FJk2dXGeDK235tjYhyoVb-z6NLwkVwBirKE8UGajGuxC8aX9-BSw_K5FDJTJVIr8qkdsUKoZQSHA_N_5X_U_qA8Tbja0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471555946</pqid></control><display><type>article</type><title>Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets</title><source>Publicly Available Content Database</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Pho, Phuong ; Mantzaris, Alexander V.</creator><creatorcontrib>Pho, Phuong ; Mantzaris, Alexander V.</creatorcontrib><description>Classification of data points which correspond to complex entities such as people or journal articles is a ongoing research task. Notable applications are recommendation systems for customer behaviors based upon their features or past purchases and in academia labeling relevant research papers in order to reduce the reading time required. The features that can be extracted are many and result in large datasets which are a challenge to process with complex machine learning methodologies. There is also an issue on how this is presented and how to interpret the parameterizations beyond the classification accuracies. This work shows how the network information contained in an adjacency matrix allows improved classification of entities through their associations and how the framework of the SGC provide an expressive and fast approach. The proposed regularized SGC incorporates shrinkage upon three different aspects of the projection vectors to reduce the number of parameters, the size of the parameters and the directions between the vectors to produce more meaningful interpretations.</description><identifier>ISSN: 2196-1115</identifier><identifier>EISSN: 2196-1115</identifier><identifier>DOI: 10.1186/s40537-020-00366-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Big Data ; Classification ; Communications Engineering ; Computational Science and Engineering ; Computer Science ; Convolution ; Data Mining and Knowledge Discovery ; Data points ; Database Management ; Datasets ; Dimensionality reduction ; Feature extraction ; Graph Convolutional Network ; Graph neural networks ; Information Storage and Retrieval ; Interpretability ; Machine learning ; Mathematical Applications in Computer Science ; Network topologies ; Networks ; Neural networks ; Parameters ; Predictive analytics ; Recommender systems ; Scientific papers ; Simple Graph Convolution ; Social networks</subject><ispartof>Journal of big data, 2020-10, Vol.7 (1), p.1-17, Article 91</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703</citedby><cites>FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703</cites><orcidid>0000-0002-0026-5725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2471555946?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,21394,25753,27924,27925,33611,36060,37012,43733,44363,44590</link.rule.ids></links><search><creatorcontrib>Pho, Phuong</creatorcontrib><creatorcontrib>Mantzaris, Alexander V.</creatorcontrib><title>Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets</title><title>Journal of big data</title><addtitle>J Big Data</addtitle><description>Classification of data points which correspond to complex entities such as people or journal articles is a ongoing research task. Notable applications are recommendation systems for customer behaviors based upon their features or past purchases and in academia labeling relevant research papers in order to reduce the reading time required. The features that can be extracted are many and result in large datasets which are a challenge to process with complex machine learning methodologies. There is also an issue on how this is presented and how to interpret the parameterizations beyond the classification accuracies. This work shows how the network information contained in an adjacency matrix allows improved classification of entities through their associations and how the framework of the SGC provide an expressive and fast approach. The proposed regularized SGC incorporates shrinkage upon three different aspects of the projection vectors to reduce the number of parameters, the size of the parameters and the directions between the vectors to produce more meaningful interpretations.</description><subject>Big Data</subject><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data points</subject><subject>Database Management</subject><subject>Datasets</subject><subject>Dimensionality reduction</subject><subject>Feature extraction</subject><subject>Graph Convolutional Network</subject><subject>Graph neural networks</subject><subject>Information Storage and Retrieval</subject><subject>Interpretability</subject><subject>Machine learning</subject><subject>Mathematical Applications in Computer Science</subject><subject>Network topologies</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Predictive analytics</subject><subject>Recommender systems</subject><subject>Scientific papers</subject><subject>Simple Graph Convolution</subject><subject>Social networks</subject><issn>2196-1115</issn><issn>2196-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1LAzEURQdRUKp_wFXAjS5G8zL5mFlK0VooCH5s3ITMJFNTppOapKX11xsdUVeuEsK5J-9xs-wU8CVAya8CxawQOSY4x7jgPN_uZUcEKp4DANv_cz_MTkJYYIyhSBlOj7KXBzNfd8rbd6PRo12uOoMmXq1e0dj1G9eto3U9On-cjC9Q6zxKhHebxNo-Gr_yJqradjbukGtR8swN0iqqYGI4zg5a1QVz8n2Osufbm6fxXT67n0zH17O8obyMeVNjrctaAdElMDCsVlVBmOBtIwADZYYqyivWKtKKShsGJM0vuCYk7SBwMcqmg1c7tZArb5fK76RTVn49OD-XykfbdEYKLkraECgVrmmjC0VEW2CiK64FJk2dXGeDK235tjYhyoVb-z6NLwkVwBirKE8UGajGuxC8aX9-BSw_K5FDJTJVIr8qkdsUKoZQSHA_N_5X_U_qA8Tbja0</recordid><startdate>20201020</startdate><enddate>20201020</enddate><creator>Pho, Phuong</creator><creator>Mantzaris, Alexander V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0026-5725</orcidid></search><sort><creationdate>20201020</creationdate><title>Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets</title><author>Pho, Phuong ; Mantzaris, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Big Data</topic><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data points</topic><topic>Database Management</topic><topic>Datasets</topic><topic>Dimensionality reduction</topic><topic>Feature extraction</topic><topic>Graph Convolutional Network</topic><topic>Graph neural networks</topic><topic>Information Storage and Retrieval</topic><topic>Interpretability</topic><topic>Machine learning</topic><topic>Mathematical Applications in Computer Science</topic><topic>Network topologies</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Predictive analytics</topic><topic>Recommender systems</topic><topic>Scientific papers</topic><topic>Simple Graph Convolution</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pho, Phuong</creatorcontrib><creatorcontrib>Mantzaris, Alexander V.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pho, Phuong</au><au>Mantzaris, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets</atitle><jtitle>Journal of big data</jtitle><stitle>J Big Data</stitle><date>2020-10-20</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>91</artnum><issn>2196-1115</issn><eissn>2196-1115</eissn><abstract>Classification of data points which correspond to complex entities such as people or journal articles is a ongoing research task. Notable applications are recommendation systems for customer behaviors based upon their features or past purchases and in academia labeling relevant research papers in order to reduce the reading time required. The features that can be extracted are many and result in large datasets which are a challenge to process with complex machine learning methodologies. There is also an issue on how this is presented and how to interpret the parameterizations beyond the classification accuracies. This work shows how the network information contained in an adjacency matrix allows improved classification of entities through their associations and how the framework of the SGC provide an expressive and fast approach. The proposed regularized SGC incorporates shrinkage upon three different aspects of the projection vectors to reduce the number of parameters, the size of the parameters and the directions between the vectors to produce more meaningful interpretations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40537-020-00366-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0026-5725</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-1115 |
ispartof | Journal of big data, 2020-10, Vol.7 (1), p.1-17, Article 91 |
issn | 2196-1115 2196-1115 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_76784c218a0b4cd3a27f302d96d702cb |
source | Publicly Available Content Database; Social Science Premium Collection; ABI/INFORM Global; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Big Data Classification Communications Engineering Computational Science and Engineering Computer Science Convolution Data Mining and Knowledge Discovery Data points Database Management Datasets Dimensionality reduction Feature extraction Graph Convolutional Network Graph neural networks Information Storage and Retrieval Interpretability Machine learning Mathematical Applications in Computer Science Network topologies Networks Neural networks Parameters Predictive analytics Recommender systems Scientific papers Simple Graph Convolution Social networks |
title | Regularized Simple Graph Convolution (SGC) for improved interpretability of large datasets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20Simple%20Graph%20Convolution%20(SGC)%20for%20improved%20interpretability%20of%20large%20datasets&rft.jtitle=Journal%20of%20big%20data&rft.au=Pho,%20Phuong&rft.date=2020-10-20&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=91&rft.issn=2196-1115&rft.eissn=2196-1115&rft_id=info:doi/10.1186/s40537-020-00366-x&rft_dat=%3Cproquest_doaj_%3E2471555946%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-cb0dd8ba12d8151e5ba932576fc710145e4a4695fa2f79de51200176d22405703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471555946&rft_id=info:pmid/&rfr_iscdi=true |