Loading…

Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature

It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms....

Full description

Saved in:
Bibliographic Details
Published in:Nutrients 2022-03, Vol.14 (7), p.1431
Main Authors: Xu, Yang, Liu, Zejie, Xu, Shuting, Li, Chengxian, Li, Manrui, Cao, Shuqiang, Sun, Yuwen, Dai, Hao, Guo, Yadong, Chen, Xiameng, Liang, Weibo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93
cites cdi_FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93
container_end_page
container_issue 7
container_start_page 1431
container_title Nutrients
container_volume 14
creator Xu, Yang
Liu, Zejie
Xu, Shuting
Li, Chengxian
Li, Manrui
Cao, Shuqiang
Sun, Yuwen
Dai, Hao
Guo, Yadong
Chen, Xiameng
Liang, Weibo
description It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field.
doi_str_mv 10.3390/nu14071431
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_767f3636804547f2a9a8f6b8877bf4cc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_767f3636804547f2a9a8f6b8877bf4cc</doaj_id><sourcerecordid>2649002660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93</originalsourceid><addsrcrecordid>eNpdktFuFCEUhidGY5u2Nz6AIfHGmKxlgIEZL0zWTaubrJpovSYMHLZsZmAFZk3fxYeV7dbayg1w-M93fk5OVb2o8VtKO3zup5phUTNaP6mOCRZkxjmjTx-cj6qzlDZ4vwQWnD6vjmjDMMeMHVe_v2sHPjvrNLrYOQNeQ0LBooUaQnSAvkHK0ensgkfKG7T0GeLoci5Z6FKl7Pwa2RDRF5hi2MaQ4SB2Hl1FNY0qF_SHqMp96TdTvEFz70Y1oM_BwJDeoXmpsXPwa181XwNauVJB5SnCafXMqiHB2d1-Uv24vLhafJqtvn5cLuarmWaC5BltBHQcg6lZSwRr2pYSyygmrQYjSNeYRuOWM950qlOEl4iwlvQcG81709GTanngmqA2chuLvXgjg3LyNhDiWqpYvjGAFFxYyilvMWuYsKQAW8v7thWit0zrwnp_YG2nfgSjS5uiGh5BH794dy3XYSc7jElBFsDrO0AMP6fSfTm6pGEYlIcwJUk465qOCLz3_eo_6SZM0ZdW3aoKkHNcVG8OKh1DShHsvZkay_0MyX8zVMQvH9q_l_6dGPoHHOTCXw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649002660</pqid></control><display><type>article</type><title>Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Xu, Yang ; Liu, Zejie ; Xu, Shuting ; Li, Chengxian ; Li, Manrui ; Cao, Shuqiang ; Sun, Yuwen ; Dai, Hao ; Guo, Yadong ; Chen, Xiameng ; Liang, Weibo</creator><creatorcontrib>Xu, Yang ; Liu, Zejie ; Xu, Shuting ; Li, Chengxian ; Li, Manrui ; Cao, Shuqiang ; Sun, Yuwen ; Dai, Hao ; Guo, Yadong ; Chen, Xiameng ; Liang, Weibo</creatorcontrib><description>It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu14071431</identifier><identifier>PMID: 35406044</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alzheimer's disease ; Animal cognition ; Animal models ; Animals ; Apoptosis ; Autophagy ; Brain Injuries, Traumatic ; Brain research ; Caloric Restriction ; calorie restriction ; Calories ; Cell growth ; Cognitive ability ; Disease Models, Animal ; Fasting ; Fasting - physiology ; Food availability ; glial cell responses ; Glial cells ; Glial plasticity ; hippocampal neurogenesis ; Hippocampus ; intermittent fasting ; Literature reviews ; Malnutrition ; Mitochondria ; mitochondrial dysfunction ; Neurogenesis ; Neuronal-glial interactions ; Neuroplasticity ; Neuroprotection ; Neuroprotective Agents - pharmacology ; Nutrient deficiency ; Pathogenesis ; Review ; Traumatic brain injury</subject><ispartof>Nutrients, 2022-03, Vol.14 (7), p.1431</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93</citedby><cites>FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93</cites><orcidid>0000-0001-7468-8061 ; 0000-0003-4393-9053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2649002660?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2649002660?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35406044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Liu, Zejie</creatorcontrib><creatorcontrib>Xu, Shuting</creatorcontrib><creatorcontrib>Li, Chengxian</creatorcontrib><creatorcontrib>Li, Manrui</creatorcontrib><creatorcontrib>Cao, Shuqiang</creatorcontrib><creatorcontrib>Sun, Yuwen</creatorcontrib><creatorcontrib>Dai, Hao</creatorcontrib><creatorcontrib>Guo, Yadong</creatorcontrib><creatorcontrib>Chen, Xiameng</creatorcontrib><creatorcontrib>Liang, Weibo</creatorcontrib><title>Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field.</description><subject>Alzheimer's disease</subject><subject>Animal cognition</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Brain Injuries, Traumatic</subject><subject>Brain research</subject><subject>Caloric Restriction</subject><subject>calorie restriction</subject><subject>Calories</subject><subject>Cell growth</subject><subject>Cognitive ability</subject><subject>Disease Models, Animal</subject><subject>Fasting</subject><subject>Fasting - physiology</subject><subject>Food availability</subject><subject>glial cell responses</subject><subject>Glial cells</subject><subject>Glial plasticity</subject><subject>hippocampal neurogenesis</subject><subject>Hippocampus</subject><subject>intermittent fasting</subject><subject>Literature reviews</subject><subject>Malnutrition</subject><subject>Mitochondria</subject><subject>mitochondrial dysfunction</subject><subject>Neurogenesis</subject><subject>Neuronal-glial interactions</subject><subject>Neuroplasticity</subject><subject>Neuroprotection</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Nutrient deficiency</subject><subject>Pathogenesis</subject><subject>Review</subject><subject>Traumatic brain injury</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdktFuFCEUhidGY5u2Nz6AIfHGmKxlgIEZL0zWTaubrJpovSYMHLZsZmAFZk3fxYeV7dbayg1w-M93fk5OVb2o8VtKO3zup5phUTNaP6mOCRZkxjmjTx-cj6qzlDZ4vwQWnD6vjmjDMMeMHVe_v2sHPjvrNLrYOQNeQ0LBooUaQnSAvkHK0ensgkfKG7T0GeLoci5Z6FKl7Pwa2RDRF5hi2MaQ4SB2Hl1FNY0qF_SHqMp96TdTvEFz70Y1oM_BwJDeoXmpsXPwa181XwNauVJB5SnCafXMqiHB2d1-Uv24vLhafJqtvn5cLuarmWaC5BltBHQcg6lZSwRr2pYSyygmrQYjSNeYRuOWM950qlOEl4iwlvQcG81709GTanngmqA2chuLvXgjg3LyNhDiWqpYvjGAFFxYyilvMWuYsKQAW8v7thWit0zrwnp_YG2nfgSjS5uiGh5BH794dy3XYSc7jElBFsDrO0AMP6fSfTm6pGEYlIcwJUk465qOCLz3_eo_6SZM0ZdW3aoKkHNcVG8OKh1DShHsvZkay_0MyX8zVMQvH9q_l_6dGPoHHOTCXw</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Xu, Yang</creator><creator>Liu, Zejie</creator><creator>Xu, Shuting</creator><creator>Li, Chengxian</creator><creator>Li, Manrui</creator><creator>Cao, Shuqiang</creator><creator>Sun, Yuwen</creator><creator>Dai, Hao</creator><creator>Guo, Yadong</creator><creator>Chen, Xiameng</creator><creator>Liang, Weibo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7468-8061</orcidid><orcidid>https://orcid.org/0000-0003-4393-9053</orcidid></search><sort><creationdate>20220330</creationdate><title>Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature</title><author>Xu, Yang ; Liu, Zejie ; Xu, Shuting ; Li, Chengxian ; Li, Manrui ; Cao, Shuqiang ; Sun, Yuwen ; Dai, Hao ; Guo, Yadong ; Chen, Xiameng ; Liang, Weibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alzheimer's disease</topic><topic>Animal cognition</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Brain Injuries, Traumatic</topic><topic>Brain research</topic><topic>Caloric Restriction</topic><topic>calorie restriction</topic><topic>Calories</topic><topic>Cell growth</topic><topic>Cognitive ability</topic><topic>Disease Models, Animal</topic><topic>Fasting</topic><topic>Fasting - physiology</topic><topic>Food availability</topic><topic>glial cell responses</topic><topic>Glial cells</topic><topic>Glial plasticity</topic><topic>hippocampal neurogenesis</topic><topic>Hippocampus</topic><topic>intermittent fasting</topic><topic>Literature reviews</topic><topic>Malnutrition</topic><topic>Mitochondria</topic><topic>mitochondrial dysfunction</topic><topic>Neurogenesis</topic><topic>Neuronal-glial interactions</topic><topic>Neuroplasticity</topic><topic>Neuroprotection</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Nutrient deficiency</topic><topic>Pathogenesis</topic><topic>Review</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Liu, Zejie</creatorcontrib><creatorcontrib>Xu, Shuting</creatorcontrib><creatorcontrib>Li, Chengxian</creatorcontrib><creatorcontrib>Li, Manrui</creatorcontrib><creatorcontrib>Cao, Shuqiang</creatorcontrib><creatorcontrib>Sun, Yuwen</creatorcontrib><creatorcontrib>Dai, Hao</creatorcontrib><creatorcontrib>Guo, Yadong</creatorcontrib><creatorcontrib>Chen, Xiameng</creatorcontrib><creatorcontrib>Liang, Weibo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yang</au><au>Liu, Zejie</au><au>Xu, Shuting</au><au>Li, Chengxian</au><au>Li, Manrui</au><au>Cao, Shuqiang</au><au>Sun, Yuwen</au><au>Dai, Hao</au><au>Guo, Yadong</au><au>Chen, Xiameng</au><au>Liang, Weibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2022-03-30</date><risdate>2022</risdate><volume>14</volume><issue>7</issue><spage>1431</spage><pages>1431-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35406044</pmid><doi>10.3390/nu14071431</doi><orcidid>https://orcid.org/0000-0001-7468-8061</orcidid><orcidid>https://orcid.org/0000-0003-4393-9053</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6643
ispartof Nutrients, 2022-03, Vol.14 (7), p.1431
issn 2072-6643
2072-6643
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_767f3636804547f2a9a8f6b8877bf4cc
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects Alzheimer's disease
Animal cognition
Animal models
Animals
Apoptosis
Autophagy
Brain Injuries, Traumatic
Brain research
Caloric Restriction
calorie restriction
Calories
Cell growth
Cognitive ability
Disease Models, Animal
Fasting
Fasting - physiology
Food availability
glial cell responses
Glial cells
Glial plasticity
hippocampal neurogenesis
Hippocampus
intermittent fasting
Literature reviews
Malnutrition
Mitochondria
mitochondrial dysfunction
Neurogenesis
Neuronal-glial interactions
Neuroplasticity
Neuroprotection
Neuroprotective Agents - pharmacology
Nutrient deficiency
Pathogenesis
Review
Traumatic brain injury
title Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scientific%20Evidences%20of%20Calorie%20Restriction%20and%20Intermittent%20Fasting%20for%20Neuroprotection%20in%20Traumatic%20Brain%20Injury%20Animal%20Models:%20A%20Review%20of%20the%20Literature&rft.jtitle=Nutrients&rft.au=Xu,%20Yang&rft.date=2022-03-30&rft.volume=14&rft.issue=7&rft.spage=1431&rft.pages=1431-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu14071431&rft_dat=%3Cproquest_doaj_%3E2649002660%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649002660&rft_id=info:pmid/35406044&rfr_iscdi=true