Loading…
Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature
It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms....
Saved in:
Published in: | Nutrients 2022-03, Vol.14 (7), p.1431 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93 |
container_end_page | |
container_issue | 7 |
container_start_page | 1431 |
container_title | Nutrients |
container_volume | 14 |
creator | Xu, Yang Liu, Zejie Xu, Shuting Li, Chengxian Li, Manrui Cao, Shuqiang Sun, Yuwen Dai, Hao Guo, Yadong Chen, Xiameng Liang, Weibo |
description | It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field. |
doi_str_mv | 10.3390/nu14071431 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_767f3636804547f2a9a8f6b8877bf4cc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_767f3636804547f2a9a8f6b8877bf4cc</doaj_id><sourcerecordid>2649002660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93</originalsourceid><addsrcrecordid>eNpdktFuFCEUhidGY5u2Nz6AIfHGmKxlgIEZL0zWTaubrJpovSYMHLZsZmAFZk3fxYeV7dbayg1w-M93fk5OVb2o8VtKO3zup5phUTNaP6mOCRZkxjmjTx-cj6qzlDZ4vwQWnD6vjmjDMMeMHVe_v2sHPjvrNLrYOQNeQ0LBooUaQnSAvkHK0ensgkfKG7T0GeLoci5Z6FKl7Pwa2RDRF5hi2MaQ4SB2Hl1FNY0qF_SHqMp96TdTvEFz70Y1oM_BwJDeoXmpsXPwa181XwNauVJB5SnCafXMqiHB2d1-Uv24vLhafJqtvn5cLuarmWaC5BltBHQcg6lZSwRr2pYSyygmrQYjSNeYRuOWM950qlOEl4iwlvQcG81709GTanngmqA2chuLvXgjg3LyNhDiWqpYvjGAFFxYyilvMWuYsKQAW8v7thWit0zrwnp_YG2nfgSjS5uiGh5BH794dy3XYSc7jElBFsDrO0AMP6fSfTm6pGEYlIcwJUk465qOCLz3_eo_6SZM0ZdW3aoKkHNcVG8OKh1DShHsvZkay_0MyX8zVMQvH9q_l_6dGPoHHOTCXw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649002660</pqid></control><display><type>article</type><title>Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Xu, Yang ; Liu, Zejie ; Xu, Shuting ; Li, Chengxian ; Li, Manrui ; Cao, Shuqiang ; Sun, Yuwen ; Dai, Hao ; Guo, Yadong ; Chen, Xiameng ; Liang, Weibo</creator><creatorcontrib>Xu, Yang ; Liu, Zejie ; Xu, Shuting ; Li, Chengxian ; Li, Manrui ; Cao, Shuqiang ; Sun, Yuwen ; Dai, Hao ; Guo, Yadong ; Chen, Xiameng ; Liang, Weibo</creatorcontrib><description>It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu14071431</identifier><identifier>PMID: 35406044</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alzheimer's disease ; Animal cognition ; Animal models ; Animals ; Apoptosis ; Autophagy ; Brain Injuries, Traumatic ; Brain research ; Caloric Restriction ; calorie restriction ; Calories ; Cell growth ; Cognitive ability ; Disease Models, Animal ; Fasting ; Fasting - physiology ; Food availability ; glial cell responses ; Glial cells ; Glial plasticity ; hippocampal neurogenesis ; Hippocampus ; intermittent fasting ; Literature reviews ; Malnutrition ; Mitochondria ; mitochondrial dysfunction ; Neurogenesis ; Neuronal-glial interactions ; Neuroplasticity ; Neuroprotection ; Neuroprotective Agents - pharmacology ; Nutrient deficiency ; Pathogenesis ; Review ; Traumatic brain injury</subject><ispartof>Nutrients, 2022-03, Vol.14 (7), p.1431</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93</citedby><cites>FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93</cites><orcidid>0000-0001-7468-8061 ; 0000-0003-4393-9053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2649002660?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2649002660?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35406044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Liu, Zejie</creatorcontrib><creatorcontrib>Xu, Shuting</creatorcontrib><creatorcontrib>Li, Chengxian</creatorcontrib><creatorcontrib>Li, Manrui</creatorcontrib><creatorcontrib>Cao, Shuqiang</creatorcontrib><creatorcontrib>Sun, Yuwen</creatorcontrib><creatorcontrib>Dai, Hao</creatorcontrib><creatorcontrib>Guo, Yadong</creatorcontrib><creatorcontrib>Chen, Xiameng</creatorcontrib><creatorcontrib>Liang, Weibo</creatorcontrib><title>Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field.</description><subject>Alzheimer's disease</subject><subject>Animal cognition</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Brain Injuries, Traumatic</subject><subject>Brain research</subject><subject>Caloric Restriction</subject><subject>calorie restriction</subject><subject>Calories</subject><subject>Cell growth</subject><subject>Cognitive ability</subject><subject>Disease Models, Animal</subject><subject>Fasting</subject><subject>Fasting - physiology</subject><subject>Food availability</subject><subject>glial cell responses</subject><subject>Glial cells</subject><subject>Glial plasticity</subject><subject>hippocampal neurogenesis</subject><subject>Hippocampus</subject><subject>intermittent fasting</subject><subject>Literature reviews</subject><subject>Malnutrition</subject><subject>Mitochondria</subject><subject>mitochondrial dysfunction</subject><subject>Neurogenesis</subject><subject>Neuronal-glial interactions</subject><subject>Neuroplasticity</subject><subject>Neuroprotection</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Nutrient deficiency</subject><subject>Pathogenesis</subject><subject>Review</subject><subject>Traumatic brain injury</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdktFuFCEUhidGY5u2Nz6AIfHGmKxlgIEZL0zWTaubrJpovSYMHLZsZmAFZk3fxYeV7dbayg1w-M93fk5OVb2o8VtKO3zup5phUTNaP6mOCRZkxjmjTx-cj6qzlDZ4vwQWnD6vjmjDMMeMHVe_v2sHPjvrNLrYOQNeQ0LBooUaQnSAvkHK0ensgkfKG7T0GeLoci5Z6FKl7Pwa2RDRF5hi2MaQ4SB2Hl1FNY0qF_SHqMp96TdTvEFz70Y1oM_BwJDeoXmpsXPwa181XwNauVJB5SnCafXMqiHB2d1-Uv24vLhafJqtvn5cLuarmWaC5BltBHQcg6lZSwRr2pYSyygmrQYjSNeYRuOWM950qlOEl4iwlvQcG81709GTanngmqA2chuLvXgjg3LyNhDiWqpYvjGAFFxYyilvMWuYsKQAW8v7thWit0zrwnp_YG2nfgSjS5uiGh5BH794dy3XYSc7jElBFsDrO0AMP6fSfTm6pGEYlIcwJUk465qOCLz3_eo_6SZM0ZdW3aoKkHNcVG8OKh1DShHsvZkay_0MyX8zVMQvH9q_l_6dGPoHHOTCXw</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Xu, Yang</creator><creator>Liu, Zejie</creator><creator>Xu, Shuting</creator><creator>Li, Chengxian</creator><creator>Li, Manrui</creator><creator>Cao, Shuqiang</creator><creator>Sun, Yuwen</creator><creator>Dai, Hao</creator><creator>Guo, Yadong</creator><creator>Chen, Xiameng</creator><creator>Liang, Weibo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7468-8061</orcidid><orcidid>https://orcid.org/0000-0003-4393-9053</orcidid></search><sort><creationdate>20220330</creationdate><title>Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature</title><author>Xu, Yang ; Liu, Zejie ; Xu, Shuting ; Li, Chengxian ; Li, Manrui ; Cao, Shuqiang ; Sun, Yuwen ; Dai, Hao ; Guo, Yadong ; Chen, Xiameng ; Liang, Weibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alzheimer's disease</topic><topic>Animal cognition</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Brain Injuries, Traumatic</topic><topic>Brain research</topic><topic>Caloric Restriction</topic><topic>calorie restriction</topic><topic>Calories</topic><topic>Cell growth</topic><topic>Cognitive ability</topic><topic>Disease Models, Animal</topic><topic>Fasting</topic><topic>Fasting - physiology</topic><topic>Food availability</topic><topic>glial cell responses</topic><topic>Glial cells</topic><topic>Glial plasticity</topic><topic>hippocampal neurogenesis</topic><topic>Hippocampus</topic><topic>intermittent fasting</topic><topic>Literature reviews</topic><topic>Malnutrition</topic><topic>Mitochondria</topic><topic>mitochondrial dysfunction</topic><topic>Neurogenesis</topic><topic>Neuronal-glial interactions</topic><topic>Neuroplasticity</topic><topic>Neuroprotection</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Nutrient deficiency</topic><topic>Pathogenesis</topic><topic>Review</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Liu, Zejie</creatorcontrib><creatorcontrib>Xu, Shuting</creatorcontrib><creatorcontrib>Li, Chengxian</creatorcontrib><creatorcontrib>Li, Manrui</creatorcontrib><creatorcontrib>Cao, Shuqiang</creatorcontrib><creatorcontrib>Sun, Yuwen</creatorcontrib><creatorcontrib>Dai, Hao</creatorcontrib><creatorcontrib>Guo, Yadong</creatorcontrib><creatorcontrib>Chen, Xiameng</creatorcontrib><creatorcontrib>Liang, Weibo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yang</au><au>Liu, Zejie</au><au>Xu, Shuting</au><au>Li, Chengxian</au><au>Li, Manrui</au><au>Cao, Shuqiang</au><au>Sun, Yuwen</au><au>Dai, Hao</au><au>Guo, Yadong</au><au>Chen, Xiameng</au><au>Liang, Weibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2022-03-30</date><risdate>2022</risdate><volume>14</volume><issue>7</issue><spage>1431</spage><pages>1431-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35406044</pmid><doi>10.3390/nu14071431</doi><orcidid>https://orcid.org/0000-0001-7468-8061</orcidid><orcidid>https://orcid.org/0000-0003-4393-9053</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6643 |
ispartof | Nutrients, 2022-03, Vol.14 (7), p.1431 |
issn | 2072-6643 2072-6643 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_767f3636804547f2a9a8f6b8877bf4cc |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | Alzheimer's disease Animal cognition Animal models Animals Apoptosis Autophagy Brain Injuries, Traumatic Brain research Caloric Restriction calorie restriction Calories Cell growth Cognitive ability Disease Models, Animal Fasting Fasting - physiology Food availability glial cell responses Glial cells Glial plasticity hippocampal neurogenesis Hippocampus intermittent fasting Literature reviews Malnutrition Mitochondria mitochondrial dysfunction Neurogenesis Neuronal-glial interactions Neuroplasticity Neuroprotection Neuroprotective Agents - pharmacology Nutrient deficiency Pathogenesis Review Traumatic brain injury |
title | Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scientific%20Evidences%20of%20Calorie%20Restriction%20and%20Intermittent%20Fasting%20for%20Neuroprotection%20in%20Traumatic%20Brain%20Injury%20Animal%20Models:%20A%20Review%20of%20the%20Literature&rft.jtitle=Nutrients&rft.au=Xu,%20Yang&rft.date=2022-03-30&rft.volume=14&rft.issue=7&rft.spage=1431&rft.pages=1431-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu14071431&rft_dat=%3Cproquest_doaj_%3E2649002660%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-357e960ed14827458832f43028ced7295d5c0864659a9a262957ff2b60dc6bd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649002660&rft_id=info:pmid/35406044&rfr_iscdi=true |