Loading…
Synthesis of porous silica hollow spheres using sacrificial template for drug delivery applications
In this work, we report on the synthesis of SiO2 hollow spheres using carbon nanospheres as the sacrificial template by hydrothermal method. The synthesized substrates are in a spherical morphology and uniform size distribution. The effects of hydrothermal process, concentration and the reaction tem...
Saved in:
Published in: | Current chemistry letters 2014-06, Vol.3 (3), p.141-146 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we report on the synthesis of SiO2 hollow spheres using carbon nanospheres as the sacrificial template by hydrothermal method. The synthesized substrates are in a spherical morphology and uniform size distribution. The effects of hydrothermal process, concentration and the reaction temperature were optimized during synthesis of carbon nanospheres. Infrared spectroscopy (IR), and scanning electronic microscopy (SEM) methods were used for identification of the synthesized products. The synthesized SiO2 nanospheres were used as drug carrier to investigate in vitro release behavior of monoterpenic phenol isomers, carvacrol and thymol, in simulated body fluid (SBF). Ultraviolet-visible spectroscopy (UV-vis) method was carried out to determine the amount of the drugs entrapped in the carrier. The results indicated that SiO2 nanospheres have high ability to adsorb the drugs and there is no need for adjusting the pH during the adsorption process. The drug release profile shows a three stages pattern and indicates a delayed release action. |
---|---|
ISSN: | 1927-7296 1927-730X |
DOI: | 10.5267/j.ccl.2014.5.005 |