Loading…

Controls on zooplankton methane production in the central Baltic Sea

Several methanogenic pathways in oxic surface waters were recently discovered, but their relevance in the natural environment is still unknown. Our study examines distinct methane (CH4) enrichments that repeatedly occur below the thermocline during the summer months in the central Baltic Sea. In agr...

Full description

Saved in:
Bibliographic Details
Published in:Biogeosciences 2019-01, Vol.16 (1), p.1-16
Main Authors: Stawiarski, Beate, Otto, Stefan, Thiel, Volker, Grawe, Ulf, Loick-Wilde, Natalie, Wittenborn, Anna K, Schloemer, Stefan, Wage, Janine, Rehder, Gregor, Labrenz, Matthias, Wasmund, Norbert, Schmale, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3
cites cdi_FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3
container_end_page 16
container_issue 1
container_start_page 1
container_title Biogeosciences
container_volume 16
creator Stawiarski, Beate
Otto, Stefan
Thiel, Volker
Grawe, Ulf
Loick-Wilde, Natalie
Wittenborn, Anna K
Schloemer, Stefan
Wage, Janine
Rehder, Gregor
Labrenz, Matthias
Wasmund, Norbert
Schmale, Oliver
description Several methanogenic pathways in oxic surface waters were recently discovered, but their relevance in the natural environment is still unknown. Our study examines distinct methane (CH4) enrichments that repeatedly occur below the thermocline during the summer months in the central Baltic Sea. In agreement with previous studies in this region, we discovered differences in the methane distributions between the western and eastern Gotland Basin, pointing to in situ methane production below the thermocline in the latter (concentration of CH4 14.1±6.1 nM, δ13C CH4 −62.9 ‰). Through the use of a high-resolution hydrographic model of the Baltic Sea, we showed that methane below the thermocline can be transported by upwelling events towards the sea surface, thus contributing to the methane flux at the sea–air interface. To quantify zooplankton-associated methane production rates, we developed a sea-going methane stripping-oxidation line to determine methane release rates from copepods grazing on 14C-labelled phytoplankton. We found that (1) methane production increased with the number of copepods, (2) higher methane production rates were measured in incubations with Temora longicornis (125±49 fmol methane copepod−1 d−1) than in incubations with Acartia spp. (84±19 fmol CH4 copepod−1 d−1) dominated zooplankton communities, and (3) methane was only produced on a Rhodomonas sp. diet, and not on a cyanobacteria diet. Furthermore, copepod-specific methane production rates increased with incubation time. The latter finding suggests that methanogenic substrates for water-dwelling microbes are released by cell disruption during feeding, defecation, or diffusion from fecal pellets. In the field, particularly high methane concentrations coincided with stations showing a high abundance of DMSP/DMSO-rich Dinophyceae. Lipid biomarkers extracted from phytoplankton- and copepod-rich samples revealed that Dinophyceae are a major food source of the T. longicornis dominated zooplankton community, supporting the proposed link between copepod grazing, DMSP/DMSO release, and the build-up of subthermocline methane enrichments in the central Baltic Sea.
doi_str_mv 10.5194/bg-16-1-2019
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_768ddf62ccf448e3881f6ee2591f2a90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A568671937</galeid><doaj_id>oai_doaj_org_article_768ddf62ccf448e3881f6ee2591f2a90</doaj_id><sourcerecordid>A568671937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3</originalsourceid><addsrcrecordid>eNptkU-LFDEQxRtxwXXXmx-gwZNgr6mkO50c1_HfwILg6jlUpyu9GXs6Y5IB3U9vxhHdAckhxeP3HvWoqnoO7KoD3b4epgZkAw1noB9V59Bz2bSg9OMH85PqaUobxoRiqjuv3q7CkmOYUx2W-j6E3YzLt1zmLeU7XKjexTDubfZF8kud76i2VBw4129wzt7Wt4SX1ZnDOdGzP_9F9fX9uy-rj83Npw_r1fVNY1upciOwdeCY0B3rGCDvBYxaIiDSIJgeRpBlyxG5QOakIEKhnIZBcakFkhUX1fqYOwbcmF30W4w_TUBvfgshTgZj2Wkm00s1jk5ya13bKhJKgZNEvNPgOGpWsl4cs0rB73tK2WzCPi5lfcNBtkxJpvp_1IQl1C8ulOp265M1151UsgctDtTVf6jyRtp6GxZyvugnhpcnhsJk-pEn3Kdk1refT9lXR9bGkFIk97c4MHM4uxkmA9KAOZxd_AIs4Jxw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164086087</pqid></control><display><type>article</type><title>Controls on zooplankton methane production in the central Baltic Sea</title><source>DOAJ Directory of Open Access Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Stawiarski, Beate ; Otto, Stefan ; Thiel, Volker ; Grawe, Ulf ; Loick-Wilde, Natalie ; Wittenborn, Anna K ; Schloemer, Stefan ; Wage, Janine ; Rehder, Gregor ; Labrenz, Matthias ; Wasmund, Norbert ; Schmale, Oliver</creator><creatorcontrib>Stawiarski, Beate ; Otto, Stefan ; Thiel, Volker ; Grawe, Ulf ; Loick-Wilde, Natalie ; Wittenborn, Anna K ; Schloemer, Stefan ; Wage, Janine ; Rehder, Gregor ; Labrenz, Matthias ; Wasmund, Norbert ; Schmale, Oliver</creatorcontrib><description>Several methanogenic pathways in oxic surface waters were recently discovered, but their relevance in the natural environment is still unknown. Our study examines distinct methane (CH4) enrichments that repeatedly occur below the thermocline during the summer months in the central Baltic Sea. In agreement with previous studies in this region, we discovered differences in the methane distributions between the western and eastern Gotland Basin, pointing to in situ methane production below the thermocline in the latter (concentration of CH4 14.1±6.1 nM, δ13C CH4 −62.9 ‰). Through the use of a high-resolution hydrographic model of the Baltic Sea, we showed that methane below the thermocline can be transported by upwelling events towards the sea surface, thus contributing to the methane flux at the sea–air interface. To quantify zooplankton-associated methane production rates, we developed a sea-going methane stripping-oxidation line to determine methane release rates from copepods grazing on 14C-labelled phytoplankton. We found that (1) methane production increased with the number of copepods, (2) higher methane production rates were measured in incubations with Temora longicornis (125±49 fmol methane copepod−1 d−1) than in incubations with Acartia spp. (84±19 fmol CH4 copepod−1 d−1) dominated zooplankton communities, and (3) methane was only produced on a Rhodomonas sp. diet, and not on a cyanobacteria diet. Furthermore, copepod-specific methane production rates increased with incubation time. The latter finding suggests that methanogenic substrates for water-dwelling microbes are released by cell disruption during feeding, defecation, or diffusion from fecal pellets. In the field, particularly high methane concentrations coincided with stations showing a high abundance of DMSP/DMSO-rich Dinophyceae. Lipid biomarkers extracted from phytoplankton- and copepod-rich samples revealed that Dinophyceae are a major food source of the T. longicornis dominated zooplankton community, supporting the proposed link between copepod grazing, DMSP/DMSO release, and the build-up of subthermocline methane enrichments in the central Baltic Sea.</description><identifier>ISSN: 1726-4189</identifier><identifier>ISSN: 1726-4170</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-16-1-2019</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Abundance ; Analysis ; Aquatic crustaceans ; Biomarkers ; Carbon 14 ; Cell disruption ; Chemical oceanography ; Copepoda ; Copepods ; Cyanobacteria ; Defaecation ; Defecation ; Diet ; Dinophyceae ; Disruption ; Dye dispersion ; Environmental aspects ; Faecal pellets ; Food sources ; Grazing ; Incubation period ; Lipids ; Methane ; Methane production ; Methanogenesis ; Ocean circulation ; Oxidation ; Physiological aspects ; Phytoplankton ; Plankton ; Sea surface ; Substrates ; Sulfur oxides ; Surface water ; Temperature (air-sea) ; Thermocline ; Upwelling ; Zooplankton</subject><ispartof>Biogeosciences, 2019-01, Vol.16 (1), p.1-16</ispartof><rights>COPYRIGHT 2019 Copernicus GmbH</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3</citedby><cites>FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3</cites><orcidid>0000-0002-0597-9989 ; 0000-0002-7706-4235 ; 0000-0003-4007-9764 ; 0000-0002-0696-8210 ; 0000-0002-7979-7176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2164086087/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2164086087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Stawiarski, Beate</creatorcontrib><creatorcontrib>Otto, Stefan</creatorcontrib><creatorcontrib>Thiel, Volker</creatorcontrib><creatorcontrib>Grawe, Ulf</creatorcontrib><creatorcontrib>Loick-Wilde, Natalie</creatorcontrib><creatorcontrib>Wittenborn, Anna K</creatorcontrib><creatorcontrib>Schloemer, Stefan</creatorcontrib><creatorcontrib>Wage, Janine</creatorcontrib><creatorcontrib>Rehder, Gregor</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><creatorcontrib>Wasmund, Norbert</creatorcontrib><creatorcontrib>Schmale, Oliver</creatorcontrib><title>Controls on zooplankton methane production in the central Baltic Sea</title><title>Biogeosciences</title><description>Several methanogenic pathways in oxic surface waters were recently discovered, but their relevance in the natural environment is still unknown. Our study examines distinct methane (CH4) enrichments that repeatedly occur below the thermocline during the summer months in the central Baltic Sea. In agreement with previous studies in this region, we discovered differences in the methane distributions between the western and eastern Gotland Basin, pointing to in situ methane production below the thermocline in the latter (concentration of CH4 14.1±6.1 nM, δ13C CH4 −62.9 ‰). Through the use of a high-resolution hydrographic model of the Baltic Sea, we showed that methane below the thermocline can be transported by upwelling events towards the sea surface, thus contributing to the methane flux at the sea–air interface. To quantify zooplankton-associated methane production rates, we developed a sea-going methane stripping-oxidation line to determine methane release rates from copepods grazing on 14C-labelled phytoplankton. We found that (1) methane production increased with the number of copepods, (2) higher methane production rates were measured in incubations with Temora longicornis (125±49 fmol methane copepod−1 d−1) than in incubations with Acartia spp. (84±19 fmol CH4 copepod−1 d−1) dominated zooplankton communities, and (3) methane was only produced on a Rhodomonas sp. diet, and not on a cyanobacteria diet. Furthermore, copepod-specific methane production rates increased with incubation time. The latter finding suggests that methanogenic substrates for water-dwelling microbes are released by cell disruption during feeding, defecation, or diffusion from fecal pellets. In the field, particularly high methane concentrations coincided with stations showing a high abundance of DMSP/DMSO-rich Dinophyceae. Lipid biomarkers extracted from phytoplankton- and copepod-rich samples revealed that Dinophyceae are a major food source of the T. longicornis dominated zooplankton community, supporting the proposed link between copepod grazing, DMSP/DMSO release, and the build-up of subthermocline methane enrichments in the central Baltic Sea.</description><subject>Abundance</subject><subject>Analysis</subject><subject>Aquatic crustaceans</subject><subject>Biomarkers</subject><subject>Carbon 14</subject><subject>Cell disruption</subject><subject>Chemical oceanography</subject><subject>Copepoda</subject><subject>Copepods</subject><subject>Cyanobacteria</subject><subject>Defaecation</subject><subject>Defecation</subject><subject>Diet</subject><subject>Dinophyceae</subject><subject>Disruption</subject><subject>Dye dispersion</subject><subject>Environmental aspects</subject><subject>Faecal pellets</subject><subject>Food sources</subject><subject>Grazing</subject><subject>Incubation period</subject><subject>Lipids</subject><subject>Methane</subject><subject>Methane production</subject><subject>Methanogenesis</subject><subject>Ocean circulation</subject><subject>Oxidation</subject><subject>Physiological aspects</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Sea surface</subject><subject>Substrates</subject><subject>Sulfur oxides</subject><subject>Surface water</subject><subject>Temperature (air-sea)</subject><subject>Thermocline</subject><subject>Upwelling</subject><subject>Zooplankton</subject><issn>1726-4189</issn><issn>1726-4170</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU-LFDEQxRtxwXXXmx-gwZNgr6mkO50c1_HfwILg6jlUpyu9GXs6Y5IB3U9vxhHdAckhxeP3HvWoqnoO7KoD3b4epgZkAw1noB9V59Bz2bSg9OMH85PqaUobxoRiqjuv3q7CkmOYUx2W-j6E3YzLt1zmLeU7XKjexTDubfZF8kud76i2VBw4129wzt7Wt4SX1ZnDOdGzP_9F9fX9uy-rj83Npw_r1fVNY1upciOwdeCY0B3rGCDvBYxaIiDSIJgeRpBlyxG5QOakIEKhnIZBcakFkhUX1fqYOwbcmF30W4w_TUBvfgshTgZj2Wkm00s1jk5ya13bKhJKgZNEvNPgOGpWsl4cs0rB73tK2WzCPi5lfcNBtkxJpvp_1IQl1C8ulOp265M1151UsgctDtTVf6jyRtp6GxZyvugnhpcnhsJk-pEn3Kdk1refT9lXR9bGkFIk97c4MHM4uxkmA9KAOZxd_AIs4Jxw</recordid><startdate>20190107</startdate><enddate>20190107</enddate><creator>Stawiarski, Beate</creator><creator>Otto, Stefan</creator><creator>Thiel, Volker</creator><creator>Grawe, Ulf</creator><creator>Loick-Wilde, Natalie</creator><creator>Wittenborn, Anna K</creator><creator>Schloemer, Stefan</creator><creator>Wage, Janine</creator><creator>Rehder, Gregor</creator><creator>Labrenz, Matthias</creator><creator>Wasmund, Norbert</creator><creator>Schmale, Oliver</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0597-9989</orcidid><orcidid>https://orcid.org/0000-0002-7706-4235</orcidid><orcidid>https://orcid.org/0000-0003-4007-9764</orcidid><orcidid>https://orcid.org/0000-0002-0696-8210</orcidid><orcidid>https://orcid.org/0000-0002-7979-7176</orcidid></search><sort><creationdate>20190107</creationdate><title>Controls on zooplankton methane production in the central Baltic Sea</title><author>Stawiarski, Beate ; Otto, Stefan ; Thiel, Volker ; Grawe, Ulf ; Loick-Wilde, Natalie ; Wittenborn, Anna K ; Schloemer, Stefan ; Wage, Janine ; Rehder, Gregor ; Labrenz, Matthias ; Wasmund, Norbert ; Schmale, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abundance</topic><topic>Analysis</topic><topic>Aquatic crustaceans</topic><topic>Biomarkers</topic><topic>Carbon 14</topic><topic>Cell disruption</topic><topic>Chemical oceanography</topic><topic>Copepoda</topic><topic>Copepods</topic><topic>Cyanobacteria</topic><topic>Defaecation</topic><topic>Defecation</topic><topic>Diet</topic><topic>Dinophyceae</topic><topic>Disruption</topic><topic>Dye dispersion</topic><topic>Environmental aspects</topic><topic>Faecal pellets</topic><topic>Food sources</topic><topic>Grazing</topic><topic>Incubation period</topic><topic>Lipids</topic><topic>Methane</topic><topic>Methane production</topic><topic>Methanogenesis</topic><topic>Ocean circulation</topic><topic>Oxidation</topic><topic>Physiological aspects</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Sea surface</topic><topic>Substrates</topic><topic>Sulfur oxides</topic><topic>Surface water</topic><topic>Temperature (air-sea)</topic><topic>Thermocline</topic><topic>Upwelling</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stawiarski, Beate</creatorcontrib><creatorcontrib>Otto, Stefan</creatorcontrib><creatorcontrib>Thiel, Volker</creatorcontrib><creatorcontrib>Grawe, Ulf</creatorcontrib><creatorcontrib>Loick-Wilde, Natalie</creatorcontrib><creatorcontrib>Wittenborn, Anna K</creatorcontrib><creatorcontrib>Schloemer, Stefan</creatorcontrib><creatorcontrib>Wage, Janine</creatorcontrib><creatorcontrib>Rehder, Gregor</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><creatorcontrib>Wasmund, Norbert</creatorcontrib><creatorcontrib>Schmale, Oliver</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stawiarski, Beate</au><au>Otto, Stefan</au><au>Thiel, Volker</au><au>Grawe, Ulf</au><au>Loick-Wilde, Natalie</au><au>Wittenborn, Anna K</au><au>Schloemer, Stefan</au><au>Wage, Janine</au><au>Rehder, Gregor</au><au>Labrenz, Matthias</au><au>Wasmund, Norbert</au><au>Schmale, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controls on zooplankton methane production in the central Baltic Sea</atitle><jtitle>Biogeosciences</jtitle><date>2019-01-07</date><risdate>2019</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1726-4189</issn><issn>1726-4170</issn><eissn>1726-4189</eissn><abstract>Several methanogenic pathways in oxic surface waters were recently discovered, but their relevance in the natural environment is still unknown. Our study examines distinct methane (CH4) enrichments that repeatedly occur below the thermocline during the summer months in the central Baltic Sea. In agreement with previous studies in this region, we discovered differences in the methane distributions between the western and eastern Gotland Basin, pointing to in situ methane production below the thermocline in the latter (concentration of CH4 14.1±6.1 nM, δ13C CH4 −62.9 ‰). Through the use of a high-resolution hydrographic model of the Baltic Sea, we showed that methane below the thermocline can be transported by upwelling events towards the sea surface, thus contributing to the methane flux at the sea–air interface. To quantify zooplankton-associated methane production rates, we developed a sea-going methane stripping-oxidation line to determine methane release rates from copepods grazing on 14C-labelled phytoplankton. We found that (1) methane production increased with the number of copepods, (2) higher methane production rates were measured in incubations with Temora longicornis (125±49 fmol methane copepod−1 d−1) than in incubations with Acartia spp. (84±19 fmol CH4 copepod−1 d−1) dominated zooplankton communities, and (3) methane was only produced on a Rhodomonas sp. diet, and not on a cyanobacteria diet. Furthermore, copepod-specific methane production rates increased with incubation time. The latter finding suggests that methanogenic substrates for water-dwelling microbes are released by cell disruption during feeding, defecation, or diffusion from fecal pellets. In the field, particularly high methane concentrations coincided with stations showing a high abundance of DMSP/DMSO-rich Dinophyceae. Lipid biomarkers extracted from phytoplankton- and copepod-rich samples revealed that Dinophyceae are a major food source of the T. longicornis dominated zooplankton community, supporting the proposed link between copepod grazing, DMSP/DMSO release, and the build-up of subthermocline methane enrichments in the central Baltic Sea.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/bg-16-1-2019</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0597-9989</orcidid><orcidid>https://orcid.org/0000-0002-7706-4235</orcidid><orcidid>https://orcid.org/0000-0003-4007-9764</orcidid><orcidid>https://orcid.org/0000-0002-0696-8210</orcidid><orcidid>https://orcid.org/0000-0002-7979-7176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1726-4189
ispartof Biogeosciences, 2019-01, Vol.16 (1), p.1-16
issn 1726-4189
1726-4170
1726-4189
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_768ddf62ccf448e3881f6ee2591f2a90
source DOAJ Directory of Open Access Journals; ProQuest - Publicly Available Content Database
subjects Abundance
Analysis
Aquatic crustaceans
Biomarkers
Carbon 14
Cell disruption
Chemical oceanography
Copepoda
Copepods
Cyanobacteria
Defaecation
Defecation
Diet
Dinophyceae
Disruption
Dye dispersion
Environmental aspects
Faecal pellets
Food sources
Grazing
Incubation period
Lipids
Methane
Methane production
Methanogenesis
Ocean circulation
Oxidation
Physiological aspects
Phytoplankton
Plankton
Sea surface
Substrates
Sulfur oxides
Surface water
Temperature (air-sea)
Thermocline
Upwelling
Zooplankton
title Controls on zooplankton methane production in the central Baltic Sea
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controls%20on%20zooplankton%20methane%20production%20in%20the%20central%20Baltic%20Sea&rft.jtitle=Biogeosciences&rft.au=Stawiarski,%20Beate&rft.date=2019-01-07&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1726-4189&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-16-1-2019&rft_dat=%3Cgale_doaj_%3EA568671937%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164086087&rft_id=info:pmid/&rft_galeid=A568671937&rfr_iscdi=true