Loading…
Controls on zooplankton methane production in the central Baltic Sea
Several methanogenic pathways in oxic surface waters were recently discovered, but their relevance in the natural environment is still unknown. Our study examines distinct methane (CH4) enrichments that repeatedly occur below the thermocline during the summer months in the central Baltic Sea. In agr...
Saved in:
Published in: | Biogeosciences 2019-01, Vol.16 (1), p.1-16 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 1 |
container_title | Biogeosciences |
container_volume | 16 |
creator | Stawiarski, Beate Otto, Stefan Thiel, Volker Grawe, Ulf Loick-Wilde, Natalie Wittenborn, Anna K Schloemer, Stefan Wage, Janine Rehder, Gregor Labrenz, Matthias Wasmund, Norbert Schmale, Oliver |
description | Several methanogenic
pathways in oxic surface waters were recently discovered, but their relevance
in the natural environment is still unknown. Our study examines distinct
methane (CH4) enrichments that repeatedly occur below the thermocline during the
summer months in the central Baltic Sea. In agreement with previous studies
in this region, we discovered differences in the methane distributions
between the western and eastern Gotland Basin, pointing to in situ methane
production below the thermocline in the latter (concentration of CH4 14.1±6.1 nM, δ13C CH4 −62.9 ‰). Through
the use of a high-resolution hydrographic model of the Baltic Sea, we showed
that methane below the thermocline can be transported by upwelling events
towards the sea surface, thus contributing to the methane flux at the
sea–air interface. To quantify zooplankton-associated methane production
rates, we developed a sea-going methane stripping-oxidation line to determine
methane release rates from copepods grazing on 14C-labelled
phytoplankton. We found that (1) methane production increased with the number
of copepods, (2) higher methane production rates were measured in incubations
with Temora longicornis (125±49 fmol methane copepod−1 d−1) than in incubations with
Acartia spp. (84±19 fmol CH4 copepod−1 d−1) dominated zooplankton
communities, and (3) methane was only produced on a Rhodomonas sp.
diet, and not on a cyanobacteria diet. Furthermore, copepod-specific methane
production rates increased with incubation time. The latter finding suggests
that methanogenic substrates for water-dwelling microbes are released by cell
disruption during feeding, defecation, or diffusion from fecal pellets. In
the field, particularly high methane concentrations coincided with stations
showing a high abundance of DMSP/DMSO-rich Dinophyceae. Lipid biomarkers extracted
from phytoplankton- and copepod-rich samples revealed that Dinophyceae are a
major food source of the T. longicornis dominated zooplankton
community, supporting the proposed link between copepod grazing, DMSP/DMSO
release, and the build-up of subthermocline methane enrichments in the
central Baltic Sea. |
doi_str_mv | 10.5194/bg-16-1-2019 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_768ddf62ccf448e3881f6ee2591f2a90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A568671937</galeid><doaj_id>oai_doaj_org_article_768ddf62ccf448e3881f6ee2591f2a90</doaj_id><sourcerecordid>A568671937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3</originalsourceid><addsrcrecordid>eNptkU-LFDEQxRtxwXXXmx-gwZNgr6mkO50c1_HfwILg6jlUpyu9GXs6Y5IB3U9vxhHdAckhxeP3HvWoqnoO7KoD3b4epgZkAw1noB9V59Bz2bSg9OMH85PqaUobxoRiqjuv3q7CkmOYUx2W-j6E3YzLt1zmLeU7XKjexTDubfZF8kud76i2VBw4129wzt7Wt4SX1ZnDOdGzP_9F9fX9uy-rj83Npw_r1fVNY1upciOwdeCY0B3rGCDvBYxaIiDSIJgeRpBlyxG5QOakIEKhnIZBcakFkhUX1fqYOwbcmF30W4w_TUBvfgshTgZj2Wkm00s1jk5ya13bKhJKgZNEvNPgOGpWsl4cs0rB73tK2WzCPi5lfcNBtkxJpvp_1IQl1C8ulOp265M1151UsgctDtTVf6jyRtp6GxZyvugnhpcnhsJk-pEn3Kdk1refT9lXR9bGkFIk97c4MHM4uxkmA9KAOZxd_AIs4Jxw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164086087</pqid></control><display><type>article</type><title>Controls on zooplankton methane production in the central Baltic Sea</title><source>DOAJ Directory of Open Access Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Stawiarski, Beate ; Otto, Stefan ; Thiel, Volker ; Grawe, Ulf ; Loick-Wilde, Natalie ; Wittenborn, Anna K ; Schloemer, Stefan ; Wage, Janine ; Rehder, Gregor ; Labrenz, Matthias ; Wasmund, Norbert ; Schmale, Oliver</creator><creatorcontrib>Stawiarski, Beate ; Otto, Stefan ; Thiel, Volker ; Grawe, Ulf ; Loick-Wilde, Natalie ; Wittenborn, Anna K ; Schloemer, Stefan ; Wage, Janine ; Rehder, Gregor ; Labrenz, Matthias ; Wasmund, Norbert ; Schmale, Oliver</creatorcontrib><description>Several methanogenic
pathways in oxic surface waters were recently discovered, but their relevance
in the natural environment is still unknown. Our study examines distinct
methane (CH4) enrichments that repeatedly occur below the thermocline during the
summer months in the central Baltic Sea. In agreement with previous studies
in this region, we discovered differences in the methane distributions
between the western and eastern Gotland Basin, pointing to in situ methane
production below the thermocline in the latter (concentration of CH4 14.1±6.1 nM, δ13C CH4 −62.9 ‰). Through
the use of a high-resolution hydrographic model of the Baltic Sea, we showed
that methane below the thermocline can be transported by upwelling events
towards the sea surface, thus contributing to the methane flux at the
sea–air interface. To quantify zooplankton-associated methane production
rates, we developed a sea-going methane stripping-oxidation line to determine
methane release rates from copepods grazing on 14C-labelled
phytoplankton. We found that (1) methane production increased with the number
of copepods, (2) higher methane production rates were measured in incubations
with Temora longicornis (125±49 fmol methane copepod−1 d−1) than in incubations with
Acartia spp. (84±19 fmol CH4 copepod−1 d−1) dominated zooplankton
communities, and (3) methane was only produced on a Rhodomonas sp.
diet, and not on a cyanobacteria diet. Furthermore, copepod-specific methane
production rates increased with incubation time. The latter finding suggests
that methanogenic substrates for water-dwelling microbes are released by cell
disruption during feeding, defecation, or diffusion from fecal pellets. In
the field, particularly high methane concentrations coincided with stations
showing a high abundance of DMSP/DMSO-rich Dinophyceae. Lipid biomarkers extracted
from phytoplankton- and copepod-rich samples revealed that Dinophyceae are a
major food source of the T. longicornis dominated zooplankton
community, supporting the proposed link between copepod grazing, DMSP/DMSO
release, and the build-up of subthermocline methane enrichments in the
central Baltic Sea.</description><identifier>ISSN: 1726-4189</identifier><identifier>ISSN: 1726-4170</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-16-1-2019</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Abundance ; Analysis ; Aquatic crustaceans ; Biomarkers ; Carbon 14 ; Cell disruption ; Chemical oceanography ; Copepoda ; Copepods ; Cyanobacteria ; Defaecation ; Defecation ; Diet ; Dinophyceae ; Disruption ; Dye dispersion ; Environmental aspects ; Faecal pellets ; Food sources ; Grazing ; Incubation period ; Lipids ; Methane ; Methane production ; Methanogenesis ; Ocean circulation ; Oxidation ; Physiological aspects ; Phytoplankton ; Plankton ; Sea surface ; Substrates ; Sulfur oxides ; Surface water ; Temperature (air-sea) ; Thermocline ; Upwelling ; Zooplankton</subject><ispartof>Biogeosciences, 2019-01, Vol.16 (1), p.1-16</ispartof><rights>COPYRIGHT 2019 Copernicus GmbH</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3</citedby><cites>FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3</cites><orcidid>0000-0002-0597-9989 ; 0000-0002-7706-4235 ; 0000-0003-4007-9764 ; 0000-0002-0696-8210 ; 0000-0002-7979-7176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2164086087/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2164086087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Stawiarski, Beate</creatorcontrib><creatorcontrib>Otto, Stefan</creatorcontrib><creatorcontrib>Thiel, Volker</creatorcontrib><creatorcontrib>Grawe, Ulf</creatorcontrib><creatorcontrib>Loick-Wilde, Natalie</creatorcontrib><creatorcontrib>Wittenborn, Anna K</creatorcontrib><creatorcontrib>Schloemer, Stefan</creatorcontrib><creatorcontrib>Wage, Janine</creatorcontrib><creatorcontrib>Rehder, Gregor</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><creatorcontrib>Wasmund, Norbert</creatorcontrib><creatorcontrib>Schmale, Oliver</creatorcontrib><title>Controls on zooplankton methane production in the central Baltic Sea</title><title>Biogeosciences</title><description>Several methanogenic
pathways in oxic surface waters were recently discovered, but their relevance
in the natural environment is still unknown. Our study examines distinct
methane (CH4) enrichments that repeatedly occur below the thermocline during the
summer months in the central Baltic Sea. In agreement with previous studies
in this region, we discovered differences in the methane distributions
between the western and eastern Gotland Basin, pointing to in situ methane
production below the thermocline in the latter (concentration of CH4 14.1±6.1 nM, δ13C CH4 −62.9 ‰). Through
the use of a high-resolution hydrographic model of the Baltic Sea, we showed
that methane below the thermocline can be transported by upwelling events
towards the sea surface, thus contributing to the methane flux at the
sea–air interface. To quantify zooplankton-associated methane production
rates, we developed a sea-going methane stripping-oxidation line to determine
methane release rates from copepods grazing on 14C-labelled
phytoplankton. We found that (1) methane production increased with the number
of copepods, (2) higher methane production rates were measured in incubations
with Temora longicornis (125±49 fmol methane copepod−1 d−1) than in incubations with
Acartia spp. (84±19 fmol CH4 copepod−1 d−1) dominated zooplankton
communities, and (3) methane was only produced on a Rhodomonas sp.
diet, and not on a cyanobacteria diet. Furthermore, copepod-specific methane
production rates increased with incubation time. The latter finding suggests
that methanogenic substrates for water-dwelling microbes are released by cell
disruption during feeding, defecation, or diffusion from fecal pellets. In
the field, particularly high methane concentrations coincided with stations
showing a high abundance of DMSP/DMSO-rich Dinophyceae. Lipid biomarkers extracted
from phytoplankton- and copepod-rich samples revealed that Dinophyceae are a
major food source of the T. longicornis dominated zooplankton
community, supporting the proposed link between copepod grazing, DMSP/DMSO
release, and the build-up of subthermocline methane enrichments in the
central Baltic Sea.</description><subject>Abundance</subject><subject>Analysis</subject><subject>Aquatic crustaceans</subject><subject>Biomarkers</subject><subject>Carbon 14</subject><subject>Cell disruption</subject><subject>Chemical oceanography</subject><subject>Copepoda</subject><subject>Copepods</subject><subject>Cyanobacteria</subject><subject>Defaecation</subject><subject>Defecation</subject><subject>Diet</subject><subject>Dinophyceae</subject><subject>Disruption</subject><subject>Dye dispersion</subject><subject>Environmental aspects</subject><subject>Faecal pellets</subject><subject>Food sources</subject><subject>Grazing</subject><subject>Incubation period</subject><subject>Lipids</subject><subject>Methane</subject><subject>Methane production</subject><subject>Methanogenesis</subject><subject>Ocean circulation</subject><subject>Oxidation</subject><subject>Physiological aspects</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Sea surface</subject><subject>Substrates</subject><subject>Sulfur oxides</subject><subject>Surface water</subject><subject>Temperature (air-sea)</subject><subject>Thermocline</subject><subject>Upwelling</subject><subject>Zooplankton</subject><issn>1726-4189</issn><issn>1726-4170</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU-LFDEQxRtxwXXXmx-gwZNgr6mkO50c1_HfwILg6jlUpyu9GXs6Y5IB3U9vxhHdAckhxeP3HvWoqnoO7KoD3b4epgZkAw1noB9V59Bz2bSg9OMH85PqaUobxoRiqjuv3q7CkmOYUx2W-j6E3YzLt1zmLeU7XKjexTDubfZF8kud76i2VBw4129wzt7Wt4SX1ZnDOdGzP_9F9fX9uy-rj83Npw_r1fVNY1upciOwdeCY0B3rGCDvBYxaIiDSIJgeRpBlyxG5QOakIEKhnIZBcakFkhUX1fqYOwbcmF30W4w_TUBvfgshTgZj2Wkm00s1jk5ya13bKhJKgZNEvNPgOGpWsl4cs0rB73tK2WzCPi5lfcNBtkxJpvp_1IQl1C8ulOp265M1151UsgctDtTVf6jyRtp6GxZyvugnhpcnhsJk-pEn3Kdk1refT9lXR9bGkFIk97c4MHM4uxkmA9KAOZxd_AIs4Jxw</recordid><startdate>20190107</startdate><enddate>20190107</enddate><creator>Stawiarski, Beate</creator><creator>Otto, Stefan</creator><creator>Thiel, Volker</creator><creator>Grawe, Ulf</creator><creator>Loick-Wilde, Natalie</creator><creator>Wittenborn, Anna K</creator><creator>Schloemer, Stefan</creator><creator>Wage, Janine</creator><creator>Rehder, Gregor</creator><creator>Labrenz, Matthias</creator><creator>Wasmund, Norbert</creator><creator>Schmale, Oliver</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0597-9989</orcidid><orcidid>https://orcid.org/0000-0002-7706-4235</orcidid><orcidid>https://orcid.org/0000-0003-4007-9764</orcidid><orcidid>https://orcid.org/0000-0002-0696-8210</orcidid><orcidid>https://orcid.org/0000-0002-7979-7176</orcidid></search><sort><creationdate>20190107</creationdate><title>Controls on zooplankton methane production in the central Baltic Sea</title><author>Stawiarski, Beate ; Otto, Stefan ; Thiel, Volker ; Grawe, Ulf ; Loick-Wilde, Natalie ; Wittenborn, Anna K ; Schloemer, Stefan ; Wage, Janine ; Rehder, Gregor ; Labrenz, Matthias ; Wasmund, Norbert ; Schmale, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abundance</topic><topic>Analysis</topic><topic>Aquatic crustaceans</topic><topic>Biomarkers</topic><topic>Carbon 14</topic><topic>Cell disruption</topic><topic>Chemical oceanography</topic><topic>Copepoda</topic><topic>Copepods</topic><topic>Cyanobacteria</topic><topic>Defaecation</topic><topic>Defecation</topic><topic>Diet</topic><topic>Dinophyceae</topic><topic>Disruption</topic><topic>Dye dispersion</topic><topic>Environmental aspects</topic><topic>Faecal pellets</topic><topic>Food sources</topic><topic>Grazing</topic><topic>Incubation period</topic><topic>Lipids</topic><topic>Methane</topic><topic>Methane production</topic><topic>Methanogenesis</topic><topic>Ocean circulation</topic><topic>Oxidation</topic><topic>Physiological aspects</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Sea surface</topic><topic>Substrates</topic><topic>Sulfur oxides</topic><topic>Surface water</topic><topic>Temperature (air-sea)</topic><topic>Thermocline</topic><topic>Upwelling</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stawiarski, Beate</creatorcontrib><creatorcontrib>Otto, Stefan</creatorcontrib><creatorcontrib>Thiel, Volker</creatorcontrib><creatorcontrib>Grawe, Ulf</creatorcontrib><creatorcontrib>Loick-Wilde, Natalie</creatorcontrib><creatorcontrib>Wittenborn, Anna K</creatorcontrib><creatorcontrib>Schloemer, Stefan</creatorcontrib><creatorcontrib>Wage, Janine</creatorcontrib><creatorcontrib>Rehder, Gregor</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><creatorcontrib>Wasmund, Norbert</creatorcontrib><creatorcontrib>Schmale, Oliver</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stawiarski, Beate</au><au>Otto, Stefan</au><au>Thiel, Volker</au><au>Grawe, Ulf</au><au>Loick-Wilde, Natalie</au><au>Wittenborn, Anna K</au><au>Schloemer, Stefan</au><au>Wage, Janine</au><au>Rehder, Gregor</au><au>Labrenz, Matthias</au><au>Wasmund, Norbert</au><au>Schmale, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controls on zooplankton methane production in the central Baltic Sea</atitle><jtitle>Biogeosciences</jtitle><date>2019-01-07</date><risdate>2019</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1726-4189</issn><issn>1726-4170</issn><eissn>1726-4189</eissn><abstract>Several methanogenic
pathways in oxic surface waters were recently discovered, but their relevance
in the natural environment is still unknown. Our study examines distinct
methane (CH4) enrichments that repeatedly occur below the thermocline during the
summer months in the central Baltic Sea. In agreement with previous studies
in this region, we discovered differences in the methane distributions
between the western and eastern Gotland Basin, pointing to in situ methane
production below the thermocline in the latter (concentration of CH4 14.1±6.1 nM, δ13C CH4 −62.9 ‰). Through
the use of a high-resolution hydrographic model of the Baltic Sea, we showed
that methane below the thermocline can be transported by upwelling events
towards the sea surface, thus contributing to the methane flux at the
sea–air interface. To quantify zooplankton-associated methane production
rates, we developed a sea-going methane stripping-oxidation line to determine
methane release rates from copepods grazing on 14C-labelled
phytoplankton. We found that (1) methane production increased with the number
of copepods, (2) higher methane production rates were measured in incubations
with Temora longicornis (125±49 fmol methane copepod−1 d−1) than in incubations with
Acartia spp. (84±19 fmol CH4 copepod−1 d−1) dominated zooplankton
communities, and (3) methane was only produced on a Rhodomonas sp.
diet, and not on a cyanobacteria diet. Furthermore, copepod-specific methane
production rates increased with incubation time. The latter finding suggests
that methanogenic substrates for water-dwelling microbes are released by cell
disruption during feeding, defecation, or diffusion from fecal pellets. In
the field, particularly high methane concentrations coincided with stations
showing a high abundance of DMSP/DMSO-rich Dinophyceae. Lipid biomarkers extracted
from phytoplankton- and copepod-rich samples revealed that Dinophyceae are a
major food source of the T. longicornis dominated zooplankton
community, supporting the proposed link between copepod grazing, DMSP/DMSO
release, and the build-up of subthermocline methane enrichments in the
central Baltic Sea.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/bg-16-1-2019</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0597-9989</orcidid><orcidid>https://orcid.org/0000-0002-7706-4235</orcidid><orcidid>https://orcid.org/0000-0003-4007-9764</orcidid><orcidid>https://orcid.org/0000-0002-0696-8210</orcidid><orcidid>https://orcid.org/0000-0002-7979-7176</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1726-4189 |
ispartof | Biogeosciences, 2019-01, Vol.16 (1), p.1-16 |
issn | 1726-4189 1726-4170 1726-4189 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_768ddf62ccf448e3881f6ee2591f2a90 |
source | DOAJ Directory of Open Access Journals; ProQuest - Publicly Available Content Database |
subjects | Abundance Analysis Aquatic crustaceans Biomarkers Carbon 14 Cell disruption Chemical oceanography Copepoda Copepods Cyanobacteria Defaecation Defecation Diet Dinophyceae Disruption Dye dispersion Environmental aspects Faecal pellets Food sources Grazing Incubation period Lipids Methane Methane production Methanogenesis Ocean circulation Oxidation Physiological aspects Phytoplankton Plankton Sea surface Substrates Sulfur oxides Surface water Temperature (air-sea) Thermocline Upwelling Zooplankton |
title | Controls on zooplankton methane production in the central Baltic Sea |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controls%20on%20zooplankton%20methane%20production%20in%20the%20central%20Baltic%20Sea&rft.jtitle=Biogeosciences&rft.au=Stawiarski,%20Beate&rft.date=2019-01-07&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1726-4189&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-16-1-2019&rft_dat=%3Cgale_doaj_%3EA568671937%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-3a4f1f03950501a2731d96a1aaeb309bd16726da23a0f63eea38f91b82693aec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164086087&rft_id=info:pmid/&rft_galeid=A568671937&rfr_iscdi=true |