Loading…

3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation

Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen,...

Full description

Saved in:
Bibliographic Details
Published in:Gels 2023-08, Vol.9 (8), p.637
Main Authors: Nayak, Vasudev Vivekanand, Tovar, Nick, Khan, Doha, Pereira, Angel Cabrera, Mijares, Dindo Q, Weck, Marcus, Durand, Alejandro, Smay, James E, Torroni, Andrea, Coelho, Paulo G, Witek, Lukasz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43
cites cdi_FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43
container_end_page
container_issue 8
container_start_page 637
container_title Gels
container_volume 9
creator Nayak, Vasudev Vivekanand
Tovar, Nick
Khan, Doha
Pereira, Angel Cabrera
Mijares, Dindo Q
Weck, Marcus
Durand, Alejandro
Smay, James E
Torroni, Andrea
Coelho, Paulo G
Witek, Lukasz
description Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds’ ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.
doi_str_mv 10.3390/gels9080637
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76a2177da27148dba37990479441fa77</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762478543</galeid><doaj_id>oai_doaj_org_article_76a2177da27148dba37990479441fa77</doaj_id><sourcerecordid>A762478543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43</originalsourceid><addsrcrecordid>eNptkt-KEzEUxgdR3KXulS8Q8FK65t9MJldSu10tLLhg9TacZpJpyjQZk2mhXnm_tz6hT2LaLroFyUXCl-_8-DjnFMVrgq8Zk_hda7okcY0rJp4Vl5QRPKZ1RZ4_eV8UVymtMcZElKwk5GVxwURFGZb8snhgN-g-Oj8436LFvjeIoA9h57xB09B10BqPvmiwNnRNQjZEtHApbQ2a-TabTDzUTfq-cxoGF3z6_fPX_WqfnA56ZTZZ7dB0BRH0kL0_jh4EvkFzj765IQY020G3PeqvihcWumSuHu9R8fV2tph-Gt99_jifTu7GmtdiGFecS2uILulSmpICphXT0izBLkkpdK0lWNPImtXCSC1oQ4QFjAUvLa1qzdmomJ-4TYC16qPbQNyrAE4dhRBbBXFwujNKVECJEA1QQXjdLIEJKTEXknNiQYjMen9i9dvlxjTa-CFCdwY9__FupdqwUwTzkjNWZcKbR0IM37cmDWodttHnBihalyLnZkz8c7WQYzlvQ6bpjUtaTfIwuagPtFFx_R9XPs1hFMEb67J-VvD2VKBjSCka-zc5weqwYOrJgrE_S1nDCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857074337</pqid></control><display><type>article</type><title>3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><creator>Nayak, Vasudev Vivekanand ; Tovar, Nick ; Khan, Doha ; Pereira, Angel Cabrera ; Mijares, Dindo Q ; Weck, Marcus ; Durand, Alejandro ; Smay, James E ; Torroni, Andrea ; Coelho, Paulo G ; Witek, Lukasz</creator><creatorcontrib>Nayak, Vasudev Vivekanand ; Tovar, Nick ; Khan, Doha ; Pereira, Angel Cabrera ; Mijares, Dindo Q ; Weck, Marcus ; Durand, Alejandro ; Smay, James E ; Torroni, Andrea ; Coelho, Paulo G ; Witek, Lukasz</creatorcontrib><description>Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds’ ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.</description><identifier>ISSN: 2310-2861</identifier><identifier>EISSN: 2310-2861</identifier><identifier>DOI: 10.3390/gels9080637</identifier><identifier>PMID: 37623094</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; 3D printing ; additive manufacturing ; Alkaline phosphatase ; Biocompatibility ; Biomedical materials ; bovine collagen ; Calorimetry ; Cattle ; Collagen ; Crosslinked polymers ; Crosslinking ; Cytotoxicity ; Denaturation ; Fourier transforms ; Gels ; Infrared analysis ; Infrared spectroscopy ; Inkjet printing ; lyophilizing ; Phosphatases ; Polymers ; Proteins ; Raw materials ; Rheological properties ; Scaffolds ; Scientific equipment and supplies industry ; Shear stress ; Shear thinning (liquids) ; Thermal stability ; Thermogravimetric analysis ; Three dimensional printing ; Tissue engineering ; Viscoelasticity ; Viscosity ; Yield stress</subject><ispartof>Gels, 2023-08, Vol.9 (8), p.637</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43</citedby><cites>FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43</cites><orcidid>0000-0003-1458-6527 ; 0000-0002-6837-0572 ; 0000-0001-7507-6331 ; 0000-0003-2739-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857074337/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857074337?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>Nayak, Vasudev Vivekanand</creatorcontrib><creatorcontrib>Tovar, Nick</creatorcontrib><creatorcontrib>Khan, Doha</creatorcontrib><creatorcontrib>Pereira, Angel Cabrera</creatorcontrib><creatorcontrib>Mijares, Dindo Q</creatorcontrib><creatorcontrib>Weck, Marcus</creatorcontrib><creatorcontrib>Durand, Alejandro</creatorcontrib><creatorcontrib>Smay, James E</creatorcontrib><creatorcontrib>Torroni, Andrea</creatorcontrib><creatorcontrib>Coelho, Paulo G</creatorcontrib><creatorcontrib>Witek, Lukasz</creatorcontrib><title>3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation</title><title>Gels</title><description>Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds’ ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>additive manufacturing</subject><subject>Alkaline phosphatase</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>bovine collagen</subject><subject>Calorimetry</subject><subject>Cattle</subject><subject>Collagen</subject><subject>Crosslinked polymers</subject><subject>Crosslinking</subject><subject>Cytotoxicity</subject><subject>Denaturation</subject><subject>Fourier transforms</subject><subject>Gels</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Inkjet printing</subject><subject>lyophilizing</subject><subject>Phosphatases</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Raw materials</subject><subject>Rheological properties</subject><subject>Scaffolds</subject><subject>Scientific equipment and supplies industry</subject><subject>Shear stress</subject><subject>Shear thinning (liquids)</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><subject>Yield stress</subject><issn>2310-2861</issn><issn>2310-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt-KEzEUxgdR3KXulS8Q8FK65t9MJldSu10tLLhg9TacZpJpyjQZk2mhXnm_tz6hT2LaLroFyUXCl-_8-DjnFMVrgq8Zk_hda7okcY0rJp4Vl5QRPKZ1RZ4_eV8UVymtMcZElKwk5GVxwURFGZb8snhgN-g-Oj8436LFvjeIoA9h57xB09B10BqPvmiwNnRNQjZEtHApbQ2a-TabTDzUTfq-cxoGF3z6_fPX_WqfnA56ZTZZ7dB0BRH0kL0_jh4EvkFzj765IQY020G3PeqvihcWumSuHu9R8fV2tph-Gt99_jifTu7GmtdiGFecS2uILulSmpICphXT0izBLkkpdK0lWNPImtXCSC1oQ4QFjAUvLa1qzdmomJ-4TYC16qPbQNyrAE4dhRBbBXFwujNKVECJEA1QQXjdLIEJKTEXknNiQYjMen9i9dvlxjTa-CFCdwY9__FupdqwUwTzkjNWZcKbR0IM37cmDWodttHnBihalyLnZkz8c7WQYzlvQ6bpjUtaTfIwuagPtFFx_R9XPs1hFMEb67J-VvD2VKBjSCka-zc5weqwYOrJgrE_S1nDCQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Nayak, Vasudev Vivekanand</creator><creator>Tovar, Nick</creator><creator>Khan, Doha</creator><creator>Pereira, Angel Cabrera</creator><creator>Mijares, Dindo Q</creator><creator>Weck, Marcus</creator><creator>Durand, Alejandro</creator><creator>Smay, James E</creator><creator>Torroni, Andrea</creator><creator>Coelho, Paulo G</creator><creator>Witek, Lukasz</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1458-6527</orcidid><orcidid>https://orcid.org/0000-0002-6837-0572</orcidid><orcidid>https://orcid.org/0000-0001-7507-6331</orcidid><orcidid>https://orcid.org/0000-0003-2739-0339</orcidid></search><sort><creationdate>20230801</creationdate><title>3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation</title><author>Nayak, Vasudev Vivekanand ; Tovar, Nick ; Khan, Doha ; Pereira, Angel Cabrera ; Mijares, Dindo Q ; Weck, Marcus ; Durand, Alejandro ; Smay, James E ; Torroni, Andrea ; Coelho, Paulo G ; Witek, Lukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>additive manufacturing</topic><topic>Alkaline phosphatase</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>bovine collagen</topic><topic>Calorimetry</topic><topic>Cattle</topic><topic>Collagen</topic><topic>Crosslinked polymers</topic><topic>Crosslinking</topic><topic>Cytotoxicity</topic><topic>Denaturation</topic><topic>Fourier transforms</topic><topic>Gels</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Inkjet printing</topic><topic>lyophilizing</topic><topic>Phosphatases</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Raw materials</topic><topic>Rheological properties</topic><topic>Scaffolds</topic><topic>Scientific equipment and supplies industry</topic><topic>Shear stress</topic><topic>Shear thinning (liquids)</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nayak, Vasudev Vivekanand</creatorcontrib><creatorcontrib>Tovar, Nick</creatorcontrib><creatorcontrib>Khan, Doha</creatorcontrib><creatorcontrib>Pereira, Angel Cabrera</creatorcontrib><creatorcontrib>Mijares, Dindo Q</creatorcontrib><creatorcontrib>Weck, Marcus</creatorcontrib><creatorcontrib>Durand, Alejandro</creatorcontrib><creatorcontrib>Smay, James E</creatorcontrib><creatorcontrib>Torroni, Andrea</creatorcontrib><creatorcontrib>Coelho, Paulo G</creatorcontrib><creatorcontrib>Witek, Lukasz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Gels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nayak, Vasudev Vivekanand</au><au>Tovar, Nick</au><au>Khan, Doha</au><au>Pereira, Angel Cabrera</au><au>Mijares, Dindo Q</au><au>Weck, Marcus</au><au>Durand, Alejandro</au><au>Smay, James E</au><au>Torroni, Andrea</au><au>Coelho, Paulo G</au><au>Witek, Lukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation</atitle><jtitle>Gels</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>9</volume><issue>8</issue><spage>637</spage><pages>637-</pages><issn>2310-2861</issn><eissn>2310-2861</eissn><abstract>Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds’ ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37623094</pmid><doi>10.3390/gels9080637</doi><orcidid>https://orcid.org/0000-0003-1458-6527</orcidid><orcidid>https://orcid.org/0000-0002-6837-0572</orcidid><orcidid>https://orcid.org/0000-0001-7507-6331</orcidid><orcidid>https://orcid.org/0000-0003-2739-0339</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2310-2861
ispartof Gels, 2023-08, Vol.9 (8), p.637
issn 2310-2861
2310-2861
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_76a2177da27148dba37990479441fa77
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC)
subjects 3-D printers
3D printing
additive manufacturing
Alkaline phosphatase
Biocompatibility
Biomedical materials
bovine collagen
Calorimetry
Cattle
Collagen
Crosslinked polymers
Crosslinking
Cytotoxicity
Denaturation
Fourier transforms
Gels
Infrared analysis
Infrared spectroscopy
Inkjet printing
lyophilizing
Phosphatases
Polymers
Proteins
Raw materials
Rheological properties
Scaffolds
Scientific equipment and supplies industry
Shear stress
Shear thinning (liquids)
Thermal stability
Thermogravimetric analysis
Three dimensional printing
Tissue engineering
Viscoelasticity
Viscosity
Yield stress
title 3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20Type%201%20Bovine%20Collagen%20Scaffolds%20for%20Tissue%20Engineering%20Applications%E2%80%94Physicochemical%20Characterization%20and%20In%20Vitro%20Evaluation&rft.jtitle=Gels&rft.au=Nayak,%20Vasudev%20Vivekanand&rft.date=2023-08-01&rft.volume=9&rft.issue=8&rft.spage=637&rft.pages=637-&rft.issn=2310-2861&rft.eissn=2310-2861&rft_id=info:doi/10.3390/gels9080637&rft_dat=%3Cgale_doaj_%3EA762478543%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857074337&rft_id=info:pmid/37623094&rft_galeid=A762478543&rfr_iscdi=true