Loading…
3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation
Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen,...
Saved in:
Published in: | Gels 2023-08, Vol.9 (8), p.637 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43 |
container_end_page | |
container_issue | 8 |
container_start_page | 637 |
container_title | Gels |
container_volume | 9 |
creator | Nayak, Vasudev Vivekanand Tovar, Nick Khan, Doha Pereira, Angel Cabrera Mijares, Dindo Q Weck, Marcus Durand, Alejandro Smay, James E Torroni, Andrea Coelho, Paulo G Witek, Lukasz |
description | Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds’ ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications. |
doi_str_mv | 10.3390/gels9080637 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76a2177da27148dba37990479441fa77</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762478543</galeid><doaj_id>oai_doaj_org_article_76a2177da27148dba37990479441fa77</doaj_id><sourcerecordid>A762478543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43</originalsourceid><addsrcrecordid>eNptkt-KEzEUxgdR3KXulS8Q8FK65t9MJldSu10tLLhg9TacZpJpyjQZk2mhXnm_tz6hT2LaLroFyUXCl-_8-DjnFMVrgq8Zk_hda7okcY0rJp4Vl5QRPKZ1RZ4_eV8UVymtMcZElKwk5GVxwURFGZb8snhgN-g-Oj8436LFvjeIoA9h57xB09B10BqPvmiwNnRNQjZEtHApbQ2a-TabTDzUTfq-cxoGF3z6_fPX_WqfnA56ZTZZ7dB0BRH0kL0_jh4EvkFzj765IQY020G3PeqvihcWumSuHu9R8fV2tph-Gt99_jifTu7GmtdiGFecS2uILulSmpICphXT0izBLkkpdK0lWNPImtXCSC1oQ4QFjAUvLa1qzdmomJ-4TYC16qPbQNyrAE4dhRBbBXFwujNKVECJEA1QQXjdLIEJKTEXknNiQYjMen9i9dvlxjTa-CFCdwY9__FupdqwUwTzkjNWZcKbR0IM37cmDWodttHnBihalyLnZkz8c7WQYzlvQ6bpjUtaTfIwuagPtFFx_R9XPs1hFMEb67J-VvD2VKBjSCka-zc5weqwYOrJgrE_S1nDCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857074337</pqid></control><display><type>article</type><title>3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><creator>Nayak, Vasudev Vivekanand ; Tovar, Nick ; Khan, Doha ; Pereira, Angel Cabrera ; Mijares, Dindo Q ; Weck, Marcus ; Durand, Alejandro ; Smay, James E ; Torroni, Andrea ; Coelho, Paulo G ; Witek, Lukasz</creator><creatorcontrib>Nayak, Vasudev Vivekanand ; Tovar, Nick ; Khan, Doha ; Pereira, Angel Cabrera ; Mijares, Dindo Q ; Weck, Marcus ; Durand, Alejandro ; Smay, James E ; Torroni, Andrea ; Coelho, Paulo G ; Witek, Lukasz</creatorcontrib><description>Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds’ ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.</description><identifier>ISSN: 2310-2861</identifier><identifier>EISSN: 2310-2861</identifier><identifier>DOI: 10.3390/gels9080637</identifier><identifier>PMID: 37623094</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; 3D printing ; additive manufacturing ; Alkaline phosphatase ; Biocompatibility ; Biomedical materials ; bovine collagen ; Calorimetry ; Cattle ; Collagen ; Crosslinked polymers ; Crosslinking ; Cytotoxicity ; Denaturation ; Fourier transforms ; Gels ; Infrared analysis ; Infrared spectroscopy ; Inkjet printing ; lyophilizing ; Phosphatases ; Polymers ; Proteins ; Raw materials ; Rheological properties ; Scaffolds ; Scientific equipment and supplies industry ; Shear stress ; Shear thinning (liquids) ; Thermal stability ; Thermogravimetric analysis ; Three dimensional printing ; Tissue engineering ; Viscoelasticity ; Viscosity ; Yield stress</subject><ispartof>Gels, 2023-08, Vol.9 (8), p.637</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43</citedby><cites>FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43</cites><orcidid>0000-0003-1458-6527 ; 0000-0002-6837-0572 ; 0000-0001-7507-6331 ; 0000-0003-2739-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857074337/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857074337?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>Nayak, Vasudev Vivekanand</creatorcontrib><creatorcontrib>Tovar, Nick</creatorcontrib><creatorcontrib>Khan, Doha</creatorcontrib><creatorcontrib>Pereira, Angel Cabrera</creatorcontrib><creatorcontrib>Mijares, Dindo Q</creatorcontrib><creatorcontrib>Weck, Marcus</creatorcontrib><creatorcontrib>Durand, Alejandro</creatorcontrib><creatorcontrib>Smay, James E</creatorcontrib><creatorcontrib>Torroni, Andrea</creatorcontrib><creatorcontrib>Coelho, Paulo G</creatorcontrib><creatorcontrib>Witek, Lukasz</creatorcontrib><title>3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation</title><title>Gels</title><description>Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds’ ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>additive manufacturing</subject><subject>Alkaline phosphatase</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>bovine collagen</subject><subject>Calorimetry</subject><subject>Cattle</subject><subject>Collagen</subject><subject>Crosslinked polymers</subject><subject>Crosslinking</subject><subject>Cytotoxicity</subject><subject>Denaturation</subject><subject>Fourier transforms</subject><subject>Gels</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Inkjet printing</subject><subject>lyophilizing</subject><subject>Phosphatases</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Raw materials</subject><subject>Rheological properties</subject><subject>Scaffolds</subject><subject>Scientific equipment and supplies industry</subject><subject>Shear stress</subject><subject>Shear thinning (liquids)</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><subject>Yield stress</subject><issn>2310-2861</issn><issn>2310-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt-KEzEUxgdR3KXulS8Q8FK65t9MJldSu10tLLhg9TacZpJpyjQZk2mhXnm_tz6hT2LaLroFyUXCl-_8-DjnFMVrgq8Zk_hda7okcY0rJp4Vl5QRPKZ1RZ4_eV8UVymtMcZElKwk5GVxwURFGZb8snhgN-g-Oj8436LFvjeIoA9h57xB09B10BqPvmiwNnRNQjZEtHApbQ2a-TabTDzUTfq-cxoGF3z6_fPX_WqfnA56ZTZZ7dB0BRH0kL0_jh4EvkFzj765IQY020G3PeqvihcWumSuHu9R8fV2tph-Gt99_jifTu7GmtdiGFecS2uILulSmpICphXT0izBLkkpdK0lWNPImtXCSC1oQ4QFjAUvLa1qzdmomJ-4TYC16qPbQNyrAE4dhRBbBXFwujNKVECJEA1QQXjdLIEJKTEXknNiQYjMen9i9dvlxjTa-CFCdwY9__FupdqwUwTzkjNWZcKbR0IM37cmDWodttHnBihalyLnZkz8c7WQYzlvQ6bpjUtaTfIwuagPtFFx_R9XPs1hFMEb67J-VvD2VKBjSCka-zc5weqwYOrJgrE_S1nDCQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Nayak, Vasudev Vivekanand</creator><creator>Tovar, Nick</creator><creator>Khan, Doha</creator><creator>Pereira, Angel Cabrera</creator><creator>Mijares, Dindo Q</creator><creator>Weck, Marcus</creator><creator>Durand, Alejandro</creator><creator>Smay, James E</creator><creator>Torroni, Andrea</creator><creator>Coelho, Paulo G</creator><creator>Witek, Lukasz</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1458-6527</orcidid><orcidid>https://orcid.org/0000-0002-6837-0572</orcidid><orcidid>https://orcid.org/0000-0001-7507-6331</orcidid><orcidid>https://orcid.org/0000-0003-2739-0339</orcidid></search><sort><creationdate>20230801</creationdate><title>3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation</title><author>Nayak, Vasudev Vivekanand ; Tovar, Nick ; Khan, Doha ; Pereira, Angel Cabrera ; Mijares, Dindo Q ; Weck, Marcus ; Durand, Alejandro ; Smay, James E ; Torroni, Andrea ; Coelho, Paulo G ; Witek, Lukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>additive manufacturing</topic><topic>Alkaline phosphatase</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>bovine collagen</topic><topic>Calorimetry</topic><topic>Cattle</topic><topic>Collagen</topic><topic>Crosslinked polymers</topic><topic>Crosslinking</topic><topic>Cytotoxicity</topic><topic>Denaturation</topic><topic>Fourier transforms</topic><topic>Gels</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Inkjet printing</topic><topic>lyophilizing</topic><topic>Phosphatases</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Raw materials</topic><topic>Rheological properties</topic><topic>Scaffolds</topic><topic>Scientific equipment and supplies industry</topic><topic>Shear stress</topic><topic>Shear thinning (liquids)</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nayak, Vasudev Vivekanand</creatorcontrib><creatorcontrib>Tovar, Nick</creatorcontrib><creatorcontrib>Khan, Doha</creatorcontrib><creatorcontrib>Pereira, Angel Cabrera</creatorcontrib><creatorcontrib>Mijares, Dindo Q</creatorcontrib><creatorcontrib>Weck, Marcus</creatorcontrib><creatorcontrib>Durand, Alejandro</creatorcontrib><creatorcontrib>Smay, James E</creatorcontrib><creatorcontrib>Torroni, Andrea</creatorcontrib><creatorcontrib>Coelho, Paulo G</creatorcontrib><creatorcontrib>Witek, Lukasz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Gels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nayak, Vasudev Vivekanand</au><au>Tovar, Nick</au><au>Khan, Doha</au><au>Pereira, Angel Cabrera</au><au>Mijares, Dindo Q</au><au>Weck, Marcus</au><au>Durand, Alejandro</au><au>Smay, James E</au><au>Torroni, Andrea</au><au>Coelho, Paulo G</au><au>Witek, Lukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation</atitle><jtitle>Gels</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>9</volume><issue>8</issue><spage>637</spage><pages>637-</pages><issn>2310-2861</issn><eissn>2310-2861</eissn><abstract>Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds’ ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37623094</pmid><doi>10.3390/gels9080637</doi><orcidid>https://orcid.org/0000-0003-1458-6527</orcidid><orcidid>https://orcid.org/0000-0002-6837-0572</orcidid><orcidid>https://orcid.org/0000-0001-7507-6331</orcidid><orcidid>https://orcid.org/0000-0003-2739-0339</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2310-2861 |
ispartof | Gels, 2023-08, Vol.9 (8), p.637 |
issn | 2310-2861 2310-2861 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_76a2177da27148dba37990479441fa77 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC) |
subjects | 3-D printers 3D printing additive manufacturing Alkaline phosphatase Biocompatibility Biomedical materials bovine collagen Calorimetry Cattle Collagen Crosslinked polymers Crosslinking Cytotoxicity Denaturation Fourier transforms Gels Infrared analysis Infrared spectroscopy Inkjet printing lyophilizing Phosphatases Polymers Proteins Raw materials Rheological properties Scaffolds Scientific equipment and supplies industry Shear stress Shear thinning (liquids) Thermal stability Thermogravimetric analysis Three dimensional printing Tissue engineering Viscoelasticity Viscosity Yield stress |
title | 3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20Type%201%20Bovine%20Collagen%20Scaffolds%20for%20Tissue%20Engineering%20Applications%E2%80%94Physicochemical%20Characterization%20and%20In%20Vitro%20Evaluation&rft.jtitle=Gels&rft.au=Nayak,%20Vasudev%20Vivekanand&rft.date=2023-08-01&rft.volume=9&rft.issue=8&rft.spage=637&rft.pages=637-&rft.issn=2310-2861&rft.eissn=2310-2861&rft_id=info:doi/10.3390/gels9080637&rft_dat=%3Cgale_doaj_%3EA762478543%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-6449fe1c52b9e52a0263c9ebafb157c8c9afed98387e9c72d17fa00745f268c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857074337&rft_id=info:pmid/37623094&rft_galeid=A762478543&rfr_iscdi=true |