Loading…

Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH)

Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostic pathology 2008-10, Vol.3 (1), p.41-41
Main Authors: Nitta, Hiroaki, Hauss-Wegrzyniak, Beatrice, Lehrkamp, Megan, Murillo, Adrian E, Gaire, Fabien, Farrell, Michael, Walk, Eric, Penault-Llorca, Frederique, Kurosumi, Masafumi, Dietel, Manfred, Wang, Lin, Loftus, Margaret, Pettay, James, Tubbs, Raymond R, Grogan, Thomas M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b579t-707a632534c4709dce7771c3eb3e92f62d447079662ca336a6677a7b39cc5c803
cites
container_end_page 41
container_issue 1
container_start_page 41
container_title Diagnostic pathology
container_volume 3
creator Nitta, Hiroaki
Hauss-Wegrzyniak, Beatrice
Lehrkamp, Megan
Murillo, Adrian E
Gaire, Fabien
Farrell, Michael
Walk, Eric
Penault-Llorca, Frederique
Kurosumi, Masafumi
Dietel, Manfred
Wang, Lin
Loftus, Margaret
Pettay, James
Tubbs, Raymond R
Grogan, Thomas M
description Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas. The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark(R) XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H2O2 reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatase (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives. Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 - 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 - 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 - 1.0000). Automated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue m
doi_str_mv 10.1186/1746-1596-3-41
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76a66258c4cd498092de624f145565cf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76a66258c4cd498092de624f145565cf</doaj_id><sourcerecordid>733541462</sourcerecordid><originalsourceid>FETCH-LOGICAL-b579t-707a632534c4709dce7771c3eb3e92f62d447079662ca336a6677a7b39cc5c803</originalsourceid><addsrcrecordid>eNp1kstv1DAQxgMCtaVw5Yh8oz2kxI_YmwtS2W7pShVIPM6WY092XTlxsJNKy1-Ps7uUrlAveXwz8_vG48myt7i4wHjGP2DBeI7Liuc0Z_h5dvIgvHj0fZy9ivGuKFhZkuIoO8azipW05CfPjq7gHpzvW-gG5BukxsG3agCD6mBX66Gx4AwyfqwdINuhaIcRrTcpaOxvNVjfobNPV8vvN-dI9b2zeqc1PqCbxTeCVtABUp1Beh1866NvAWGBdLJL_xAAnc0XX5J0vq2pA6g4IK2Ctl1qJG5rVYdUjGqDeggpq1WdBqR926tgY3IbPEraqBwy00N799e-caMPEJOdfrL966n719nLRrkIb_bv0-zn9eLH_Ca__fp5Ob-8zetSVEMuCqE4JSVlmomiMhqEEFhTqClUpOHEsKSLinOiFaVccS6EEjWttC71rKCn2XLHNV7dyT7YVoWN9MrKreDDSqowWO1AiqmalDPNtGHVrKiIAU5Yg9Mt8lI3ifVxx-rHugWznalyB9DDSGfXcuXvJSmF4EQkwOUOUFv_BOAwkmYup6WS01JJKhlOjPf7JoL_NUIcZGvTvJ1THfgxSkFpyTDjJGVe7DJ18DEGaB6McCGnZf4f_e7x-f6l77eX_gGQx_Kx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733541462</pqid></control><display><type>article</type><title>Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH)</title><source>PubMed Central</source><creator>Nitta, Hiroaki ; Hauss-Wegrzyniak, Beatrice ; Lehrkamp, Megan ; Murillo, Adrian E ; Gaire, Fabien ; Farrell, Michael ; Walk, Eric ; Penault-Llorca, Frederique ; Kurosumi, Masafumi ; Dietel, Manfred ; Wang, Lin ; Loftus, Margaret ; Pettay, James ; Tubbs, Raymond R ; Grogan, Thomas M</creator><creatorcontrib>Nitta, Hiroaki ; Hauss-Wegrzyniak, Beatrice ; Lehrkamp, Megan ; Murillo, Adrian E ; Gaire, Fabien ; Farrell, Michael ; Walk, Eric ; Penault-Llorca, Frederique ; Kurosumi, Masafumi ; Dietel, Manfred ; Wang, Lin ; Loftus, Margaret ; Pettay, James ; Tubbs, Raymond R ; Grogan, Thomas M</creatorcontrib><description>Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas. The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark(R) XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H2O2 reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatase (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives. Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 - 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 - 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 - 1.0000). Automated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue morphological observation.</description><identifier>ISSN: 1746-1596</identifier><identifier>EISSN: 1746-1596</identifier><identifier>DOI: 10.1186/1746-1596-3-41</identifier><identifier>PMID: 18945356</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Methodology</subject><ispartof>Diagnostic pathology, 2008-10, Vol.3 (1), p.41-41</ispartof><rights>Copyright © 2008 Nitta et al; licensee BioMed Central Ltd. 2008 Nitta et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b579t-707a632534c4709dce7771c3eb3e92f62d447079662ca336a6677a7b39cc5c803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577627/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18945356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nitta, Hiroaki</creatorcontrib><creatorcontrib>Hauss-Wegrzyniak, Beatrice</creatorcontrib><creatorcontrib>Lehrkamp, Megan</creatorcontrib><creatorcontrib>Murillo, Adrian E</creatorcontrib><creatorcontrib>Gaire, Fabien</creatorcontrib><creatorcontrib>Farrell, Michael</creatorcontrib><creatorcontrib>Walk, Eric</creatorcontrib><creatorcontrib>Penault-Llorca, Frederique</creatorcontrib><creatorcontrib>Kurosumi, Masafumi</creatorcontrib><creatorcontrib>Dietel, Manfred</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Loftus, Margaret</creatorcontrib><creatorcontrib>Pettay, James</creatorcontrib><creatorcontrib>Tubbs, Raymond R</creatorcontrib><creatorcontrib>Grogan, Thomas M</creatorcontrib><title>Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH)</title><title>Diagnostic pathology</title><addtitle>Diagn Pathol</addtitle><description>Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas. The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark(R) XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H2O2 reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatase (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives. Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 - 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 - 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 - 1.0000). Automated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue morphological observation.</description><subject>Methodology</subject><issn>1746-1596</issn><issn>1746-1596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kstv1DAQxgMCtaVw5Yh8oz2kxI_YmwtS2W7pShVIPM6WY092XTlxsJNKy1-Ps7uUrlAveXwz8_vG48myt7i4wHjGP2DBeI7Liuc0Z_h5dvIgvHj0fZy9ivGuKFhZkuIoO8azipW05CfPjq7gHpzvW-gG5BukxsG3agCD6mBX66Gx4AwyfqwdINuhaIcRrTcpaOxvNVjfobNPV8vvN-dI9b2zeqc1PqCbxTeCVtABUp1Beh1866NvAWGBdLJL_xAAnc0XX5J0vq2pA6g4IK2Ctl1qJG5rVYdUjGqDeggpq1WdBqR926tgY3IbPEraqBwy00N799e-caMPEJOdfrL966n719nLRrkIb_bv0-zn9eLH_Ca__fp5Ob-8zetSVEMuCqE4JSVlmomiMhqEEFhTqClUpOHEsKSLinOiFaVccS6EEjWttC71rKCn2XLHNV7dyT7YVoWN9MrKreDDSqowWO1AiqmalDPNtGHVrKiIAU5Yg9Mt8lI3ifVxx-rHugWznalyB9DDSGfXcuXvJSmF4EQkwOUOUFv_BOAwkmYup6WS01JJKhlOjPf7JoL_NUIcZGvTvJ1THfgxSkFpyTDjJGVe7DJ18DEGaB6McCGnZf4f_e7x-f6l77eX_gGQx_Kx</recordid><startdate>20081022</startdate><enddate>20081022</enddate><creator>Nitta, Hiroaki</creator><creator>Hauss-Wegrzyniak, Beatrice</creator><creator>Lehrkamp, Megan</creator><creator>Murillo, Adrian E</creator><creator>Gaire, Fabien</creator><creator>Farrell, Michael</creator><creator>Walk, Eric</creator><creator>Penault-Llorca, Frederique</creator><creator>Kurosumi, Masafumi</creator><creator>Dietel, Manfred</creator><creator>Wang, Lin</creator><creator>Loftus, Margaret</creator><creator>Pettay, James</creator><creator>Tubbs, Raymond R</creator><creator>Grogan, Thomas M</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20081022</creationdate><title>Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH)</title><author>Nitta, Hiroaki ; Hauss-Wegrzyniak, Beatrice ; Lehrkamp, Megan ; Murillo, Adrian E ; Gaire, Fabien ; Farrell, Michael ; Walk, Eric ; Penault-Llorca, Frederique ; Kurosumi, Masafumi ; Dietel, Manfred ; Wang, Lin ; Loftus, Margaret ; Pettay, James ; Tubbs, Raymond R ; Grogan, Thomas M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b579t-707a632534c4709dce7771c3eb3e92f62d447079662ca336a6677a7b39cc5c803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Methodology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nitta, Hiroaki</creatorcontrib><creatorcontrib>Hauss-Wegrzyniak, Beatrice</creatorcontrib><creatorcontrib>Lehrkamp, Megan</creatorcontrib><creatorcontrib>Murillo, Adrian E</creatorcontrib><creatorcontrib>Gaire, Fabien</creatorcontrib><creatorcontrib>Farrell, Michael</creatorcontrib><creatorcontrib>Walk, Eric</creatorcontrib><creatorcontrib>Penault-Llorca, Frederique</creatorcontrib><creatorcontrib>Kurosumi, Masafumi</creatorcontrib><creatorcontrib>Dietel, Manfred</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Loftus, Margaret</creatorcontrib><creatorcontrib>Pettay, James</creatorcontrib><creatorcontrib>Tubbs, Raymond R</creatorcontrib><creatorcontrib>Grogan, Thomas M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Diagnostic pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nitta, Hiroaki</au><au>Hauss-Wegrzyniak, Beatrice</au><au>Lehrkamp, Megan</au><au>Murillo, Adrian E</au><au>Gaire, Fabien</au><au>Farrell, Michael</au><au>Walk, Eric</au><au>Penault-Llorca, Frederique</au><au>Kurosumi, Masafumi</au><au>Dietel, Manfred</au><au>Wang, Lin</au><au>Loftus, Margaret</au><au>Pettay, James</au><au>Tubbs, Raymond R</au><au>Grogan, Thomas M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH)</atitle><jtitle>Diagnostic pathology</jtitle><addtitle>Diagn Pathol</addtitle><date>2008-10-22</date><risdate>2008</risdate><volume>3</volume><issue>1</issue><spage>41</spage><epage>41</epage><pages>41-41</pages><issn>1746-1596</issn><eissn>1746-1596</eissn><abstract>Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas. The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark(R) XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H2O2 reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatase (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives. Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 - 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 - 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 - 1.0000). Automated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue morphological observation.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>18945356</pmid><doi>10.1186/1746-1596-3-41</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1746-1596
ispartof Diagnostic pathology, 2008-10, Vol.3 (1), p.41-41
issn 1746-1596
1746-1596
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_76a66258c4cd498092de624f145565cf
source PubMed Central
subjects Methodology
title Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20automated%20brightfield%20double%20in%20situ%20hybridization%20(BDISH)%20application%20for%20HER2%20gene%20and%20chromosome%2017%20centromere%20(CEN%2017)%20for%20breast%20carcinomas%20and%20an%20assay%20performance%20comparison%20to%20manual%20dual%20color%20HER2%20fluorescence%20in%20situ%20hybridization%20(FISH)&rft.jtitle=Diagnostic%20pathology&rft.au=Nitta,%20Hiroaki&rft.date=2008-10-22&rft.volume=3&rft.issue=1&rft.spage=41&rft.epage=41&rft.pages=41-41&rft.issn=1746-1596&rft.eissn=1746-1596&rft_id=info:doi/10.1186/1746-1596-3-41&rft_dat=%3Cproquest_doaj_%3E733541462%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b579t-707a632534c4709dce7771c3eb3e92f62d447079662ca336a6677a7b39cc5c803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733541462&rft_id=info:pmid/18945356&rfr_iscdi=true