Loading…

A Non-Laboratory Gait Dataset of Full Body Kinematics and Egocentric Vision

In this manuscript, we describe a unique dataset of human locomotion captured in a variety of out-of-the-laboratory environments captured using Inertial Measurement Unit (IMU) based wearable motion capture. The data contain full-body kinematics for walking, with and without stops, stair ambulation,...

Full description

Saved in:
Bibliographic Details
Published in:Scientific data 2023-01, Vol.10 (1), p.26-11, Article 26
Main Authors: Sharma, Abhishek, Rai, Vijeth, Calvert, Melissa, Dai, Zhongyi, Guo, Zhenghao, Boe, David, Rombokas, Eric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this manuscript, we describe a unique dataset of human locomotion captured in a variety of out-of-the-laboratory environments captured using Inertial Measurement Unit (IMU) based wearable motion capture. The data contain full-body kinematics for walking, with and without stops, stair ambulation, obstacle course navigation, dynamic movements intended to test agility, and negotiating common obstacles in public spaces such as chairs. The dataset contains 24.2 total hours of movement data from a college student population with an approximately equal split of males to females. In addition, for one of the activities, we captured the egocentric field of view and gaze of the subjects using an eye tracker. Finally, we provide some examples of applications using the dataset and discuss how it might open possibilities for new studies in human gait analysis.
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-023-01932-7