Loading…
A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation
Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-05, Vol.22 (10), p.3913 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3 |
container_end_page | |
container_issue | 10 |
container_start_page | 3913 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Balivada, Srinivasa Grant, Gregory Zhang, Xufeng Ghosh, Monisha Guha, Supratik Matamala, Roser |
description | Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R
of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m
/m
). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs. |
doi_str_mv | 10.3390/s22103913 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76b8cdb74c6143dc8e1fababd5763dca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76b8cdb74c6143dc8e1fababd5763dca</doaj_id><sourcerecordid>2670406399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3</originalsourceid><addsrcrecordid>eNpVkk1vEzEQQFcIREvhwB9AFpw4pNger-PlgBRVLa3UAlKIOFpe7-zWwbWD7QX1wH9n05Sovfhj5unN2Jqqes3oMUBDP2TOGYWGwZPqkAkuZopz-vTB-aB6kfOaUg4A6nl1ALUEDpwfVn8X5IdL6DFnsgodpiHFMXRkiSHHRL5g-RPTT3Lm0Hfkm_OxkH6KL4bk7OjLmJCYCT-10cfh9iNZRufJVXT5LnVlNhsXBrLK23XphmA8WZSCYTTFxfCyetYbn_HV_X5Urc5Ov5-czy6_fr44WVzOrGhkmcm-VtZyLplCXnNQNTMSW2y4EWp6VQ9Cql4Y26JSpkapgCEgUNPPa4YIR9XFzttFs9ab5G5MutXROH0XiGnQJhVnPeq5bJXt2rmwkgnorELWm9a0XT2X09VMrk8712Zsb7CzGEoy_pH0cSa4az3E37phopaNmgRvd4KYi9PZuoL22sYQ0BbNlGwEaybo3X2VFH-NmItexzFN35c1l3MqqIRmS73fUTbFnBP2-zYY1dvR0PvRmNg3D_vek_9nAf4BHwO1RQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670406399</pqid></control><display><type>article</type><title>A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Balivada, Srinivasa ; Grant, Gregory ; Zhang, Xufeng ; Ghosh, Monisha ; Guha, Supratik ; Matamala, Roser</creator><creatorcontrib>Balivada, Srinivasa ; Grant, Gregory ; Zhang, Xufeng ; Ghosh, Monisha ; Guha, Supratik ; Matamala, Roser ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R
of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m
/m
). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22103913</identifier><identifier>PMID: 35632322</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agriculture ; Air temperature ; Algorithms ; Artificial intelligence ; Deep learning ; Dielectric properties ; Ecology ; Electrical resistivity ; Farms ; Internet of Things ; Laboratories ; Machine learning ; Moisture content ; Neural networks ; Nodes ; OTHER INSTRUMENTATION ; Power ; radio frequency attenuation ; Relative humidity ; RSSI ; Sensors ; Signal strength ; Soil conditions ; Soil mapping ; Soil moisture ; Soil sciences ; Soil temperature ; Soil water ; User interface ; Wireless networks ; wireless underground sensor network system</subject><ispartof>Sensors (Basel, Switzerland), 2022-05, Vol.22 (10), p.3913</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3</citedby><cites>FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670406399/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670406399?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35632322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1869419$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Balivada, Srinivasa</creatorcontrib><creatorcontrib>Grant, Gregory</creatorcontrib><creatorcontrib>Zhang, Xufeng</creatorcontrib><creatorcontrib>Ghosh, Monisha</creatorcontrib><creatorcontrib>Guha, Supratik</creatorcontrib><creatorcontrib>Matamala, Roser</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R
of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m
/m
). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.</description><subject>Agriculture</subject><subject>Air temperature</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Dielectric properties</subject><subject>Ecology</subject><subject>Electrical resistivity</subject><subject>Farms</subject><subject>Internet of Things</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Moisture content</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>OTHER INSTRUMENTATION</subject><subject>Power</subject><subject>radio frequency attenuation</subject><subject>Relative humidity</subject><subject>RSSI</subject><subject>Sensors</subject><subject>Signal strength</subject><subject>Soil conditions</subject><subject>Soil mapping</subject><subject>Soil moisture</subject><subject>Soil sciences</subject><subject>Soil temperature</subject><subject>Soil water</subject><subject>User interface</subject><subject>Wireless networks</subject><subject>wireless underground sensor network system</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkk1vEzEQQFcIREvhwB9AFpw4pNger-PlgBRVLa3UAlKIOFpe7-zWwbWD7QX1wH9n05Sovfhj5unN2Jqqes3oMUBDP2TOGYWGwZPqkAkuZopz-vTB-aB6kfOaUg4A6nl1ALUEDpwfVn8X5IdL6DFnsgodpiHFMXRkiSHHRL5g-RPTT3Lm0Hfkm_OxkH6KL4bk7OjLmJCYCT-10cfh9iNZRufJVXT5LnVlNhsXBrLK23XphmA8WZSCYTTFxfCyetYbn_HV_X5Urc5Ov5-czy6_fr44WVzOrGhkmcm-VtZyLplCXnNQNTMSW2y4EWp6VQ9Cql4Y26JSpkapgCEgUNPPa4YIR9XFzttFs9ab5G5MutXROH0XiGnQJhVnPeq5bJXt2rmwkgnorELWm9a0XT2X09VMrk8712Zsb7CzGEoy_pH0cSa4az3E37phopaNmgRvd4KYi9PZuoL22sYQ0BbNlGwEaybo3X2VFH-NmItexzFN35c1l3MqqIRmS73fUTbFnBP2-zYY1dvR0PvRmNg3D_vek_9nAf4BHwO1RQ</recordid><startdate>20220521</startdate><enddate>20220521</enddate><creator>Balivada, Srinivasa</creator><creator>Grant, Gregory</creator><creator>Zhang, Xufeng</creator><creator>Ghosh, Monisha</creator><creator>Guha, Supratik</creator><creator>Matamala, Roser</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220521</creationdate><title>A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation</title><author>Balivada, Srinivasa ; Grant, Gregory ; Zhang, Xufeng ; Ghosh, Monisha ; Guha, Supratik ; Matamala, Roser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Air temperature</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Dielectric properties</topic><topic>Ecology</topic><topic>Electrical resistivity</topic><topic>Farms</topic><topic>Internet of Things</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Moisture content</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>OTHER INSTRUMENTATION</topic><topic>Power</topic><topic>radio frequency attenuation</topic><topic>Relative humidity</topic><topic>RSSI</topic><topic>Sensors</topic><topic>Signal strength</topic><topic>Soil conditions</topic><topic>Soil mapping</topic><topic>Soil moisture</topic><topic>Soil sciences</topic><topic>Soil temperature</topic><topic>Soil water</topic><topic>User interface</topic><topic>Wireless networks</topic><topic>wireless underground sensor network system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balivada, Srinivasa</creatorcontrib><creatorcontrib>Grant, Gregory</creatorcontrib><creatorcontrib>Zhang, Xufeng</creatorcontrib><creatorcontrib>Ghosh, Monisha</creatorcontrib><creatorcontrib>Guha, Supratik</creatorcontrib><creatorcontrib>Matamala, Roser</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balivada, Srinivasa</au><au>Grant, Gregory</au><au>Zhang, Xufeng</au><au>Ghosh, Monisha</au><au>Guha, Supratik</au><au>Matamala, Roser</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-05-21</date><risdate>2022</risdate><volume>22</volume><issue>10</issue><spage>3913</spage><pages>3913-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R
of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m
/m
). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35632322</pmid><doi>10.3390/s22103913</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-05, Vol.22 (10), p.3913 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_76b8cdb74c6143dc8e1fababd5763dca |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Agriculture Air temperature Algorithms Artificial intelligence Deep learning Dielectric properties Ecology Electrical resistivity Farms Internet of Things Laboratories Machine learning Moisture content Neural networks Nodes OTHER INSTRUMENTATION Power radio frequency attenuation Relative humidity RSSI Sensors Signal strength Soil conditions Soil mapping Soil moisture Soil sciences Soil temperature Soil water User interface Wireless networks wireless underground sensor network system |
title | A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wireless%20Underground%20Sensor%20Network%20Field%20Pilot%20for%20Agriculture%20and%20Ecology:%20Soil%20Moisture%20Mapping%20Using%20Signal%20Attenuation&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Balivada,%20Srinivasa&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-05-21&rft.volume=22&rft.issue=10&rft.spage=3913&rft.pages=3913-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22103913&rft_dat=%3Cproquest_doaj_%3E2670406399%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670406399&rft_id=info:pmid/35632322&rfr_iscdi=true |