Loading…

A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation

Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-05, Vol.22 (10), p.3913
Main Authors: Balivada, Srinivasa, Grant, Gregory, Zhang, Xufeng, Ghosh, Monisha, Guha, Supratik, Matamala, Roser
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3
cites cdi_FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3
container_end_page
container_issue 10
container_start_page 3913
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Balivada, Srinivasa
Grant, Gregory
Zhang, Xufeng
Ghosh, Monisha
Guha, Supratik
Matamala, Roser
description Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m /m ). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.
doi_str_mv 10.3390/s22103913
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76b8cdb74c6143dc8e1fababd5763dca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76b8cdb74c6143dc8e1fababd5763dca</doaj_id><sourcerecordid>2670406399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3</originalsourceid><addsrcrecordid>eNpVkk1vEzEQQFcIREvhwB9AFpw4pNger-PlgBRVLa3UAlKIOFpe7-zWwbWD7QX1wH9n05Sovfhj5unN2Jqqes3oMUBDP2TOGYWGwZPqkAkuZopz-vTB-aB6kfOaUg4A6nl1ALUEDpwfVn8X5IdL6DFnsgodpiHFMXRkiSHHRL5g-RPTT3Lm0Hfkm_OxkH6KL4bk7OjLmJCYCT-10cfh9iNZRufJVXT5LnVlNhsXBrLK23XphmA8WZSCYTTFxfCyetYbn_HV_X5Urc5Ov5-czy6_fr44WVzOrGhkmcm-VtZyLplCXnNQNTMSW2y4EWp6VQ9Cql4Y26JSpkapgCEgUNPPa4YIR9XFzttFs9ab5G5MutXROH0XiGnQJhVnPeq5bJXt2rmwkgnorELWm9a0XT2X09VMrk8712Zsb7CzGEoy_pH0cSa4az3E37phopaNmgRvd4KYi9PZuoL22sYQ0BbNlGwEaybo3X2VFH-NmItexzFN35c1l3MqqIRmS73fUTbFnBP2-zYY1dvR0PvRmNg3D_vek_9nAf4BHwO1RQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670406399</pqid></control><display><type>article</type><title>A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Balivada, Srinivasa ; Grant, Gregory ; Zhang, Xufeng ; Ghosh, Monisha ; Guha, Supratik ; Matamala, Roser</creator><creatorcontrib>Balivada, Srinivasa ; Grant, Gregory ; Zhang, Xufeng ; Ghosh, Monisha ; Guha, Supratik ; Matamala, Roser ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m /m ). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22103913</identifier><identifier>PMID: 35632322</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agriculture ; Air temperature ; Algorithms ; Artificial intelligence ; Deep learning ; Dielectric properties ; Ecology ; Electrical resistivity ; Farms ; Internet of Things ; Laboratories ; Machine learning ; Moisture content ; Neural networks ; Nodes ; OTHER INSTRUMENTATION ; Power ; radio frequency attenuation ; Relative humidity ; RSSI ; Sensors ; Signal strength ; Soil conditions ; Soil mapping ; Soil moisture ; Soil sciences ; Soil temperature ; Soil water ; User interface ; Wireless networks ; wireless underground sensor network system</subject><ispartof>Sensors (Basel, Switzerland), 2022-05, Vol.22 (10), p.3913</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3</citedby><cites>FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670406399/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670406399?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35632322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1869419$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Balivada, Srinivasa</creatorcontrib><creatorcontrib>Grant, Gregory</creatorcontrib><creatorcontrib>Zhang, Xufeng</creatorcontrib><creatorcontrib>Ghosh, Monisha</creatorcontrib><creatorcontrib>Guha, Supratik</creatorcontrib><creatorcontrib>Matamala, Roser</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m /m ). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.</description><subject>Agriculture</subject><subject>Air temperature</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Dielectric properties</subject><subject>Ecology</subject><subject>Electrical resistivity</subject><subject>Farms</subject><subject>Internet of Things</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Moisture content</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>OTHER INSTRUMENTATION</subject><subject>Power</subject><subject>radio frequency attenuation</subject><subject>Relative humidity</subject><subject>RSSI</subject><subject>Sensors</subject><subject>Signal strength</subject><subject>Soil conditions</subject><subject>Soil mapping</subject><subject>Soil moisture</subject><subject>Soil sciences</subject><subject>Soil temperature</subject><subject>Soil water</subject><subject>User interface</subject><subject>Wireless networks</subject><subject>wireless underground sensor network system</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkk1vEzEQQFcIREvhwB9AFpw4pNger-PlgBRVLa3UAlKIOFpe7-zWwbWD7QX1wH9n05Sovfhj5unN2Jqqes3oMUBDP2TOGYWGwZPqkAkuZopz-vTB-aB6kfOaUg4A6nl1ALUEDpwfVn8X5IdL6DFnsgodpiHFMXRkiSHHRL5g-RPTT3Lm0Hfkm_OxkH6KL4bk7OjLmJCYCT-10cfh9iNZRufJVXT5LnVlNhsXBrLK23XphmA8WZSCYTTFxfCyetYbn_HV_X5Urc5Ov5-czy6_fr44WVzOrGhkmcm-VtZyLplCXnNQNTMSW2y4EWp6VQ9Cql4Y26JSpkapgCEgUNPPa4YIR9XFzttFs9ab5G5MutXROH0XiGnQJhVnPeq5bJXt2rmwkgnorELWm9a0XT2X09VMrk8712Zsb7CzGEoy_pH0cSa4az3E37phopaNmgRvd4KYi9PZuoL22sYQ0BbNlGwEaybo3X2VFH-NmItexzFN35c1l3MqqIRmS73fUTbFnBP2-zYY1dvR0PvRmNg3D_vek_9nAf4BHwO1RQ</recordid><startdate>20220521</startdate><enddate>20220521</enddate><creator>Balivada, Srinivasa</creator><creator>Grant, Gregory</creator><creator>Zhang, Xufeng</creator><creator>Ghosh, Monisha</creator><creator>Guha, Supratik</creator><creator>Matamala, Roser</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220521</creationdate><title>A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation</title><author>Balivada, Srinivasa ; Grant, Gregory ; Zhang, Xufeng ; Ghosh, Monisha ; Guha, Supratik ; Matamala, Roser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Air temperature</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Dielectric properties</topic><topic>Ecology</topic><topic>Electrical resistivity</topic><topic>Farms</topic><topic>Internet of Things</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Moisture content</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>OTHER INSTRUMENTATION</topic><topic>Power</topic><topic>radio frequency attenuation</topic><topic>Relative humidity</topic><topic>RSSI</topic><topic>Sensors</topic><topic>Signal strength</topic><topic>Soil conditions</topic><topic>Soil mapping</topic><topic>Soil moisture</topic><topic>Soil sciences</topic><topic>Soil temperature</topic><topic>Soil water</topic><topic>User interface</topic><topic>Wireless networks</topic><topic>wireless underground sensor network system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balivada, Srinivasa</creatorcontrib><creatorcontrib>Grant, Gregory</creatorcontrib><creatorcontrib>Zhang, Xufeng</creatorcontrib><creatorcontrib>Ghosh, Monisha</creatorcontrib><creatorcontrib>Guha, Supratik</creatorcontrib><creatorcontrib>Matamala, Roser</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balivada, Srinivasa</au><au>Grant, Gregory</au><au>Zhang, Xufeng</au><au>Ghosh, Monisha</au><au>Guha, Supratik</au><au>Matamala, Roser</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-05-21</date><risdate>2022</risdate><volume>22</volume><issue>10</issue><spage>3913</spage><pages>3913-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m /m ). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35632322</pmid><doi>10.3390/s22103913</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-05, Vol.22 (10), p.3913
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_76b8cdb74c6143dc8e1fababd5763dca
source Publicly Available Content (ProQuest); PubMed Central
subjects Agriculture
Air temperature
Algorithms
Artificial intelligence
Deep learning
Dielectric properties
Ecology
Electrical resistivity
Farms
Internet of Things
Laboratories
Machine learning
Moisture content
Neural networks
Nodes
OTHER INSTRUMENTATION
Power
radio frequency attenuation
Relative humidity
RSSI
Sensors
Signal strength
Soil conditions
Soil mapping
Soil moisture
Soil sciences
Soil temperature
Soil water
User interface
Wireless networks
wireless underground sensor network system
title A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wireless%20Underground%20Sensor%20Network%20Field%20Pilot%20for%20Agriculture%20and%20Ecology:%20Soil%20Moisture%20Mapping%20Using%20Signal%20Attenuation&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Balivada,%20Srinivasa&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-05-21&rft.volume=22&rft.issue=10&rft.spage=3913&rft.pages=3913-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22103913&rft_dat=%3Cproquest_doaj_%3E2670406399%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-6f58cc22618e2523851a6ebe92a48002f3468f4acbe88a5e6831e3e30af751ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670406399&rft_id=info:pmid/35632322&rfr_iscdi=true