Loading…

Combustion Synthesis of Fe-Incorporated SnO2 Nanoparticles Using Organometallic Precursor Combination

Synthesis of nanomaterials within flames has been demonstrated as a highly scalable and versatile approach for obtaining a variety of nanoparticles with respect to their chemistry, composition, size, morphology, and dimensionality. Its applicability can be amplified by exploring new material systems...

Full description

Saved in:
Bibliographic Details
Published in:Advances in materials science and engineering 2012-01, Vol.2012 (2012), p.1-8
Main Authors: Barkley, Thomas K., Vastano, Jenna E., Applegate, James R., Bakrania, Smitesh D.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthesis of nanomaterials within flames has been demonstrated as a highly scalable and versatile approach for obtaining a variety of nanoparticles with respect to their chemistry, composition, size, morphology, and dimensionality. Its applicability can be amplified by exploring new material systems and providing further control over the particle characteristics. This study focused on iron-incorporated SnO2 nanoparticles generated using an inverse coflow diffusion flame burner that supported a near-stoichiometric methane-air combustion. A liquid organometallic precursor solution of Sn(CH3)4 and Fe(CO)5 was used to produce 11–14 nm nanocrystalline particles. Synthesized particles were analyzed using TEM, XRD, and XEDS to characterize for size and composition. A flame temperature field was obtained to map particle evolution within the flame. A range of conditions and parameters were studied to specifically generate targeted particles. The study augments related research towards increasing the production potential of combustion synthesis.
ISSN:1687-8434
1687-8442
DOI:10.1155/2012/685754