Loading…
Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR
The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.25 (1), p.66 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-cb5876ce41dd12bcffd935390837e4f1ea19df7875066c24f16289f5c111dcde3 |
container_end_page | |
container_issue | 1 |
container_start_page | 66 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 25 |
creator | Wang, Xiaomeng Zhang, Wenjun Cai, Jialun Wang, Xiaowen Wu, Zhouhang Fan, Jing Yao, Yitong Deng, Binlin |
description | The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM). The results indicate that the maximum line-of-sight (LOS) displacement velocity obtained from satellite InSAR is approximately 80.9 mm/year between 1 January 2021, and 30 December 2023, with downslope displacement velocities ranging from -60.5 mm/year to 69.5 mm/year. Ground-based SAR (GB-SAR) enhances satellite observations by detecting localized apparent deformation at the rear edge of the landslide, with LOS displacement velocities reaching up to 1.5 mm/h. Our analysis suggests that steep and rugged terrain, combined with fragile and densely jointed lithology, are the primary factors contributing to the ongoing deformation of the landslide. The findings of this study demonstrate the effectiveness of combining satellite- and ground-based InSAR systems, highlighting their complementary role in interpreting complex landslide deformations. |
doi_str_mv | 10.3390/s25010066 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76f7221f65b9487c9ae291c0b3b01504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A823514691</galeid><doaj_id>oai_doaj_org_article_76f7221f65b9487c9ae291c0b3b01504</doaj_id><sourcerecordid>A823514691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-cb5876ce41dd12bcffd935390837e4f1ea19df7875066c24f16289f5c111dcde3</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbK1e-Ack4I1eTM3HfOVK1m2tCwuC1euQSU5ms84mbTIj1Ct_uqfdurQyhAknz_sm7-EUxWtGT4WQ9EPmNWWUNs2T4phVvCo7zunTB_uj4kXOW0q5EKJ7XhwJ2cqmq9vj4s9yo5M2EyT_24eBXM7JaQPkDFxMOz35GEh0ZNoAOddp2lzP-ieUq2BnA5ac6WHWYeh1JGsdbB69BdLfkGXc9T7c-ekJxtFPUBIEyEWKc7DlJ51RvQqXi28vi2dOjxle3f9Pih-fz78vv5Trrxer5WJdGtFUU2n6umsbAxWzlvHeOGelqDF8J1qoHAPNpHVt19bYBsOx0vBOutowxqyxIE6K1d7XRr1VV8nvdLpRUXt1V4hpUJjPmxFU27iWc-aaupdV1xqpgUtmaC96ympaodfHvdfV3O_AGghT0uMj08cnwW_UEH8pxtAYG48O7-4dUryeIU9q57PBTukAcc5KsLqqKC6B6Nv_0G2cU8Be3VKikazmEqnTPTVoTOCDi3ixwc_CzpsYwHmsLzoualahBgXv9wKTYs4J3OH5jKrbqVKHqUL2zcO8B_LfGIm_K2LG1w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153691529</pqid></control><display><type>article</type><title>Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Wang, Xiaomeng ; Zhang, Wenjun ; Cai, Jialun ; Wang, Xiaowen ; Wu, Zhouhang ; Fan, Jing ; Yao, Yitong ; Deng, Binlin</creator><creatorcontrib>Wang, Xiaomeng ; Zhang, Wenjun ; Cai, Jialun ; Wang, Xiaowen ; Wu, Zhouhang ; Fan, Jing ; Yao, Yitong ; Deng, Binlin</creatorcontrib><description>The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM). The results indicate that the maximum line-of-sight (LOS) displacement velocity obtained from satellite InSAR is approximately 80.9 mm/year between 1 January 2021, and 30 December 2023, with downslope displacement velocities ranging from -60.5 mm/year to 69.5 mm/year. Ground-based SAR (GB-SAR) enhances satellite observations by detecting localized apparent deformation at the rear edge of the landslide, with LOS displacement velocities reaching up to 1.5 mm/h. Our analysis suggests that steep and rugged terrain, combined with fragile and densely jointed lithology, are the primary factors contributing to the ongoing deformation of the landslide. The findings of this study demonstrate the effectiveness of combining satellite- and ground-based InSAR systems, highlighting their complementary role in interpreting complex landslide deformations.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s25010066</identifier><identifier>PMID: 39796857</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>2008 AD ; Accuracy ; China ; Daguangbao landslide ; Datasets ; Deformation ; downslope displacement transformation ; Earthquakes ; Emergency communications systems ; Geology ; Geometry ; ground-based radar (GB-SAR) ; interferometric synthetic aperture radar (InSAR) ; Landslides ; Landslides & mudslides ; Metamorphic rocks ; Optical radar ; Orbits ; Remote sensing ; Satellites ; Synthetic aperture radar ; Time series</subject><ispartof>Sensors (Basel, Switzerland), 2024-12, Vol.25 (1), p.66</ispartof><rights>COPYRIGHT 2025 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-cb5876ce41dd12bcffd935390837e4f1ea19df7875066c24f16289f5c111dcde3</cites><orcidid>0009-0000-2505-4345 ; 0009-0004-2343-8803 ; 0009-0004-1310-0550 ; 0000-0002-8349-2711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3153691529/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3153691529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39796857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaomeng</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><creatorcontrib>Cai, Jialun</creatorcontrib><creatorcontrib>Wang, Xiaowen</creatorcontrib><creatorcontrib>Wu, Zhouhang</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><creatorcontrib>Yao, Yitong</creatorcontrib><creatorcontrib>Deng, Binlin</creatorcontrib><title>Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM). The results indicate that the maximum line-of-sight (LOS) displacement velocity obtained from satellite InSAR is approximately 80.9 mm/year between 1 January 2021, and 30 December 2023, with downslope displacement velocities ranging from -60.5 mm/year to 69.5 mm/year. Ground-based SAR (GB-SAR) enhances satellite observations by detecting localized apparent deformation at the rear edge of the landslide, with LOS displacement velocities reaching up to 1.5 mm/h. Our analysis suggests that steep and rugged terrain, combined with fragile and densely jointed lithology, are the primary factors contributing to the ongoing deformation of the landslide. The findings of this study demonstrate the effectiveness of combining satellite- and ground-based InSAR systems, highlighting their complementary role in interpreting complex landslide deformations.</description><subject>2008 AD</subject><subject>Accuracy</subject><subject>China</subject><subject>Daguangbao landslide</subject><subject>Datasets</subject><subject>Deformation</subject><subject>downslope displacement transformation</subject><subject>Earthquakes</subject><subject>Emergency communications systems</subject><subject>Geology</subject><subject>Geometry</subject><subject>ground-based radar (GB-SAR)</subject><subject>interferometric synthetic aperture radar (InSAR)</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Metamorphic rocks</subject><subject>Optical radar</subject><subject>Orbits</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Synthetic aperture radar</subject><subject>Time series</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbK1e-Ack4I1eTM3HfOVK1m2tCwuC1euQSU5ms84mbTIj1Ct_uqfdurQyhAknz_sm7-EUxWtGT4WQ9EPmNWWUNs2T4phVvCo7zunTB_uj4kXOW0q5EKJ7XhwJ2cqmq9vj4s9yo5M2EyT_24eBXM7JaQPkDFxMOz35GEh0ZNoAOddp2lzP-ieUq2BnA5ac6WHWYeh1JGsdbB69BdLfkGXc9T7c-ekJxtFPUBIEyEWKc7DlJ51RvQqXi28vi2dOjxle3f9Pih-fz78vv5Trrxer5WJdGtFUU2n6umsbAxWzlvHeOGelqDF8J1qoHAPNpHVt19bYBsOx0vBOutowxqyxIE6K1d7XRr1VV8nvdLpRUXt1V4hpUJjPmxFU27iWc-aaupdV1xqpgUtmaC96ympaodfHvdfV3O_AGghT0uMj08cnwW_UEH8pxtAYG48O7-4dUryeIU9q57PBTukAcc5KsLqqKC6B6Nv_0G2cU8Be3VKikazmEqnTPTVoTOCDi3ixwc_CzpsYwHmsLzoualahBgXv9wKTYs4J3OH5jKrbqVKHqUL2zcO8B_LfGIm_K2LG1w</recordid><startdate>20241226</startdate><enddate>20241226</enddate><creator>Wang, Xiaomeng</creator><creator>Zhang, Wenjun</creator><creator>Cai, Jialun</creator><creator>Wang, Xiaowen</creator><creator>Wu, Zhouhang</creator><creator>Fan, Jing</creator><creator>Yao, Yitong</creator><creator>Deng, Binlin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-2505-4345</orcidid><orcidid>https://orcid.org/0009-0004-2343-8803</orcidid><orcidid>https://orcid.org/0009-0004-1310-0550</orcidid><orcidid>https://orcid.org/0000-0002-8349-2711</orcidid></search><sort><creationdate>20241226</creationdate><title>Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR</title><author>Wang, Xiaomeng ; Zhang, Wenjun ; Cai, Jialun ; Wang, Xiaowen ; Wu, Zhouhang ; Fan, Jing ; Yao, Yitong ; Deng, Binlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-cb5876ce41dd12bcffd935390837e4f1ea19df7875066c24f16289f5c111dcde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2008 AD</topic><topic>Accuracy</topic><topic>China</topic><topic>Daguangbao landslide</topic><topic>Datasets</topic><topic>Deformation</topic><topic>downslope displacement transformation</topic><topic>Earthquakes</topic><topic>Emergency communications systems</topic><topic>Geology</topic><topic>Geometry</topic><topic>ground-based radar (GB-SAR)</topic><topic>interferometric synthetic aperture radar (InSAR)</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Metamorphic rocks</topic><topic>Optical radar</topic><topic>Orbits</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Synthetic aperture radar</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaomeng</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><creatorcontrib>Cai, Jialun</creatorcontrib><creatorcontrib>Wang, Xiaowen</creatorcontrib><creatorcontrib>Wu, Zhouhang</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><creatorcontrib>Yao, Yitong</creatorcontrib><creatorcontrib>Deng, Binlin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaomeng</au><au>Zhang, Wenjun</au><au>Cai, Jialun</au><au>Wang, Xiaowen</au><au>Wu, Zhouhang</au><au>Fan, Jing</au><au>Yao, Yitong</au><au>Deng, Binlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-12-26</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>66</spage><pages>66-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM). The results indicate that the maximum line-of-sight (LOS) displacement velocity obtained from satellite InSAR is approximately 80.9 mm/year between 1 January 2021, and 30 December 2023, with downslope displacement velocities ranging from -60.5 mm/year to 69.5 mm/year. Ground-based SAR (GB-SAR) enhances satellite observations by detecting localized apparent deformation at the rear edge of the landslide, with LOS displacement velocities reaching up to 1.5 mm/h. Our analysis suggests that steep and rugged terrain, combined with fragile and densely jointed lithology, are the primary factors contributing to the ongoing deformation of the landslide. The findings of this study demonstrate the effectiveness of combining satellite- and ground-based InSAR systems, highlighting their complementary role in interpreting complex landslide deformations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39796857</pmid><doi>10.3390/s25010066</doi><orcidid>https://orcid.org/0009-0000-2505-4345</orcidid><orcidid>https://orcid.org/0009-0004-2343-8803</orcidid><orcidid>https://orcid.org/0009-0004-1310-0550</orcidid><orcidid>https://orcid.org/0000-0002-8349-2711</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-12, Vol.25 (1), p.66 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_76f7221f65b9487c9ae291c0b3b01504 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | 2008 AD Accuracy China Daguangbao landslide Datasets Deformation downslope displacement transformation Earthquakes Emergency communications systems Geology Geometry ground-based radar (GB-SAR) interferometric synthetic aperture radar (InSAR) Landslides Landslides & mudslides Metamorphic rocks Optical radar Orbits Remote sensing Satellites Synthetic aperture radar Time series |
title | Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Surface%20Deformation%20of%20the%20Earthquake-Induced%20Daguangbao%20Landslide%20by%20Combining%20Satellite-%20and%20Ground-Based%20InSAR&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Wang,%20Xiaomeng&rft.date=2024-12-26&rft.volume=25&rft.issue=1&rft.spage=66&rft.pages=66-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s25010066&rft_dat=%3Cgale_doaj_%3EA823514691%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-cb5876ce41dd12bcffd935390837e4f1ea19df7875066c24f16289f5c111dcde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153691529&rft_id=info:pmid/39796857&rft_galeid=A823514691&rfr_iscdi=true |