Loading…

Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR

The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.25 (1), p.66
Main Authors: Wang, Xiaomeng, Zhang, Wenjun, Cai, Jialun, Wang, Xiaowen, Wu, Zhouhang, Fan, Jing, Yao, Yitong, Deng, Binlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c364t-cb5876ce41dd12bcffd935390837e4f1ea19df7875066c24f16289f5c111dcde3
container_end_page
container_issue 1
container_start_page 66
container_title Sensors (Basel, Switzerland)
container_volume 25
creator Wang, Xiaomeng
Zhang, Wenjun
Cai, Jialun
Wang, Xiaowen
Wu, Zhouhang
Fan, Jing
Yao, Yitong
Deng, Binlin
description The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM). The results indicate that the maximum line-of-sight (LOS) displacement velocity obtained from satellite InSAR is approximately 80.9 mm/year between 1 January 2021, and 30 December 2023, with downslope displacement velocities ranging from -60.5 mm/year to 69.5 mm/year. Ground-based SAR (GB-SAR) enhances satellite observations by detecting localized apparent deformation at the rear edge of the landslide, with LOS displacement velocities reaching up to 1.5 mm/h. Our analysis suggests that steep and rugged terrain, combined with fragile and densely jointed lithology, are the primary factors contributing to the ongoing deformation of the landslide. The findings of this study demonstrate the effectiveness of combining satellite- and ground-based InSAR systems, highlighting their complementary role in interpreting complex landslide deformations.
doi_str_mv 10.3390/s25010066
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76f7221f65b9487c9ae291c0b3b01504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A823514691</galeid><doaj_id>oai_doaj_org_article_76f7221f65b9487c9ae291c0b3b01504</doaj_id><sourcerecordid>A823514691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-cb5876ce41dd12bcffd935390837e4f1ea19df7875066c24f16289f5c111dcde3</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbK1e-Ack4I1eTM3HfOVK1m2tCwuC1euQSU5ms84mbTIj1Ct_uqfdurQyhAknz_sm7-EUxWtGT4WQ9EPmNWWUNs2T4phVvCo7zunTB_uj4kXOW0q5EKJ7XhwJ2cqmq9vj4s9yo5M2EyT_24eBXM7JaQPkDFxMOz35GEh0ZNoAOddp2lzP-ieUq2BnA5ac6WHWYeh1JGsdbB69BdLfkGXc9T7c-ekJxtFPUBIEyEWKc7DlJ51RvQqXi28vi2dOjxle3f9Pih-fz78vv5Trrxer5WJdGtFUU2n6umsbAxWzlvHeOGelqDF8J1qoHAPNpHVt19bYBsOx0vBOutowxqyxIE6K1d7XRr1VV8nvdLpRUXt1V4hpUJjPmxFU27iWc-aaupdV1xqpgUtmaC96ympaodfHvdfV3O_AGghT0uMj08cnwW_UEH8pxtAYG48O7-4dUryeIU9q57PBTukAcc5KsLqqKC6B6Nv_0G2cU8Be3VKikazmEqnTPTVoTOCDi3ixwc_CzpsYwHmsLzoualahBgXv9wKTYs4J3OH5jKrbqVKHqUL2zcO8B_LfGIm_K2LG1w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153691529</pqid></control><display><type>article</type><title>Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Wang, Xiaomeng ; Zhang, Wenjun ; Cai, Jialun ; Wang, Xiaowen ; Wu, Zhouhang ; Fan, Jing ; Yao, Yitong ; Deng, Binlin</creator><creatorcontrib>Wang, Xiaomeng ; Zhang, Wenjun ; Cai, Jialun ; Wang, Xiaowen ; Wu, Zhouhang ; Fan, Jing ; Yao, Yitong ; Deng, Binlin</creatorcontrib><description>The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM). The results indicate that the maximum line-of-sight (LOS) displacement velocity obtained from satellite InSAR is approximately 80.9 mm/year between 1 January 2021, and 30 December 2023, with downslope displacement velocities ranging from -60.5 mm/year to 69.5 mm/year. Ground-based SAR (GB-SAR) enhances satellite observations by detecting localized apparent deformation at the rear edge of the landslide, with LOS displacement velocities reaching up to 1.5 mm/h. Our analysis suggests that steep and rugged terrain, combined with fragile and densely jointed lithology, are the primary factors contributing to the ongoing deformation of the landslide. The findings of this study demonstrate the effectiveness of combining satellite- and ground-based InSAR systems, highlighting their complementary role in interpreting complex landslide deformations.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s25010066</identifier><identifier>PMID: 39796857</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>2008 AD ; Accuracy ; China ; Daguangbao landslide ; Datasets ; Deformation ; downslope displacement transformation ; Earthquakes ; Emergency communications systems ; Geology ; Geometry ; ground-based radar (GB-SAR) ; interferometric synthetic aperture radar (InSAR) ; Landslides ; Landslides &amp; mudslides ; Metamorphic rocks ; Optical radar ; Orbits ; Remote sensing ; Satellites ; Synthetic aperture radar ; Time series</subject><ispartof>Sensors (Basel, Switzerland), 2024-12, Vol.25 (1), p.66</ispartof><rights>COPYRIGHT 2025 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-cb5876ce41dd12bcffd935390837e4f1ea19df7875066c24f16289f5c111dcde3</cites><orcidid>0009-0000-2505-4345 ; 0009-0004-2343-8803 ; 0009-0004-1310-0550 ; 0000-0002-8349-2711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3153691529/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3153691529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39796857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaomeng</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><creatorcontrib>Cai, Jialun</creatorcontrib><creatorcontrib>Wang, Xiaowen</creatorcontrib><creatorcontrib>Wu, Zhouhang</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><creatorcontrib>Yao, Yitong</creatorcontrib><creatorcontrib>Deng, Binlin</creatorcontrib><title>Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM). The results indicate that the maximum line-of-sight (LOS) displacement velocity obtained from satellite InSAR is approximately 80.9 mm/year between 1 January 2021, and 30 December 2023, with downslope displacement velocities ranging from -60.5 mm/year to 69.5 mm/year. Ground-based SAR (GB-SAR) enhances satellite observations by detecting localized apparent deformation at the rear edge of the landslide, with LOS displacement velocities reaching up to 1.5 mm/h. Our analysis suggests that steep and rugged terrain, combined with fragile and densely jointed lithology, are the primary factors contributing to the ongoing deformation of the landslide. The findings of this study demonstrate the effectiveness of combining satellite- and ground-based InSAR systems, highlighting their complementary role in interpreting complex landslide deformations.</description><subject>2008 AD</subject><subject>Accuracy</subject><subject>China</subject><subject>Daguangbao landslide</subject><subject>Datasets</subject><subject>Deformation</subject><subject>downslope displacement transformation</subject><subject>Earthquakes</subject><subject>Emergency communications systems</subject><subject>Geology</subject><subject>Geometry</subject><subject>ground-based radar (GB-SAR)</subject><subject>interferometric synthetic aperture radar (InSAR)</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Metamorphic rocks</subject><subject>Optical radar</subject><subject>Orbits</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Synthetic aperture radar</subject><subject>Time series</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbK1e-Ack4I1eTM3HfOVK1m2tCwuC1euQSU5ms84mbTIj1Ct_uqfdurQyhAknz_sm7-EUxWtGT4WQ9EPmNWWUNs2T4phVvCo7zunTB_uj4kXOW0q5EKJ7XhwJ2cqmq9vj4s9yo5M2EyT_24eBXM7JaQPkDFxMOz35GEh0ZNoAOddp2lzP-ieUq2BnA5ac6WHWYeh1JGsdbB69BdLfkGXc9T7c-ekJxtFPUBIEyEWKc7DlJ51RvQqXi28vi2dOjxle3f9Pih-fz78vv5Trrxer5WJdGtFUU2n6umsbAxWzlvHeOGelqDF8J1qoHAPNpHVt19bYBsOx0vBOutowxqyxIE6K1d7XRr1VV8nvdLpRUXt1V4hpUJjPmxFU27iWc-aaupdV1xqpgUtmaC96ympaodfHvdfV3O_AGghT0uMj08cnwW_UEH8pxtAYG48O7-4dUryeIU9q57PBTukAcc5KsLqqKC6B6Nv_0G2cU8Be3VKikazmEqnTPTVoTOCDi3ixwc_CzpsYwHmsLzoualahBgXv9wKTYs4J3OH5jKrbqVKHqUL2zcO8B_LfGIm_K2LG1w</recordid><startdate>20241226</startdate><enddate>20241226</enddate><creator>Wang, Xiaomeng</creator><creator>Zhang, Wenjun</creator><creator>Cai, Jialun</creator><creator>Wang, Xiaowen</creator><creator>Wu, Zhouhang</creator><creator>Fan, Jing</creator><creator>Yao, Yitong</creator><creator>Deng, Binlin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-2505-4345</orcidid><orcidid>https://orcid.org/0009-0004-2343-8803</orcidid><orcidid>https://orcid.org/0009-0004-1310-0550</orcidid><orcidid>https://orcid.org/0000-0002-8349-2711</orcidid></search><sort><creationdate>20241226</creationdate><title>Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR</title><author>Wang, Xiaomeng ; Zhang, Wenjun ; Cai, Jialun ; Wang, Xiaowen ; Wu, Zhouhang ; Fan, Jing ; Yao, Yitong ; Deng, Binlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-cb5876ce41dd12bcffd935390837e4f1ea19df7875066c24f16289f5c111dcde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2008 AD</topic><topic>Accuracy</topic><topic>China</topic><topic>Daguangbao landslide</topic><topic>Datasets</topic><topic>Deformation</topic><topic>downslope displacement transformation</topic><topic>Earthquakes</topic><topic>Emergency communications systems</topic><topic>Geology</topic><topic>Geometry</topic><topic>ground-based radar (GB-SAR)</topic><topic>interferometric synthetic aperture radar (InSAR)</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Metamorphic rocks</topic><topic>Optical radar</topic><topic>Orbits</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Synthetic aperture radar</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaomeng</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><creatorcontrib>Cai, Jialun</creatorcontrib><creatorcontrib>Wang, Xiaowen</creatorcontrib><creatorcontrib>Wu, Zhouhang</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><creatorcontrib>Yao, Yitong</creatorcontrib><creatorcontrib>Deng, Binlin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaomeng</au><au>Zhang, Wenjun</au><au>Cai, Jialun</au><au>Wang, Xiaowen</au><au>Wu, Zhouhang</au><au>Fan, Jing</au><au>Yao, Yitong</au><au>Deng, Binlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-12-26</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>66</spage><pages>66-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM). The results indicate that the maximum line-of-sight (LOS) displacement velocity obtained from satellite InSAR is approximately 80.9 mm/year between 1 January 2021, and 30 December 2023, with downslope displacement velocities ranging from -60.5 mm/year to 69.5 mm/year. Ground-based SAR (GB-SAR) enhances satellite observations by detecting localized apparent deformation at the rear edge of the landslide, with LOS displacement velocities reaching up to 1.5 mm/h. Our analysis suggests that steep and rugged terrain, combined with fragile and densely jointed lithology, are the primary factors contributing to the ongoing deformation of the landslide. The findings of this study demonstrate the effectiveness of combining satellite- and ground-based InSAR systems, highlighting their complementary role in interpreting complex landslide deformations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39796857</pmid><doi>10.3390/s25010066</doi><orcidid>https://orcid.org/0009-0000-2505-4345</orcidid><orcidid>https://orcid.org/0009-0004-2343-8803</orcidid><orcidid>https://orcid.org/0009-0004-1310-0550</orcidid><orcidid>https://orcid.org/0000-0002-8349-2711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-12, Vol.25 (1), p.66
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_76f7221f65b9487c9ae291c0b3b01504
source Publicly Available Content (ProQuest); PubMed Central
subjects 2008 AD
Accuracy
China
Daguangbao landslide
Datasets
Deformation
downslope displacement transformation
Earthquakes
Emergency communications systems
Geology
Geometry
ground-based radar (GB-SAR)
interferometric synthetic aperture radar (InSAR)
Landslides
Landslides & mudslides
Metamorphic rocks
Optical radar
Orbits
Remote sensing
Satellites
Synthetic aperture radar
Time series
title Characterizing Surface Deformation of the Earthquake-Induced Daguangbao Landslide by Combining Satellite- and Ground-Based InSAR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Surface%20Deformation%20of%20the%20Earthquake-Induced%20Daguangbao%20Landslide%20by%20Combining%20Satellite-%20and%20Ground-Based%20InSAR&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Wang,%20Xiaomeng&rft.date=2024-12-26&rft.volume=25&rft.issue=1&rft.spage=66&rft.pages=66-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s25010066&rft_dat=%3Cgale_doaj_%3EA823514691%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-cb5876ce41dd12bcffd935390837e4f1ea19df7875066c24f16289f5c111dcde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153691529&rft_id=info:pmid/39796857&rft_galeid=A823514691&rfr_iscdi=true