Loading…

Target Discovery of Matrine against PRRSV in Marc-145 Cells via Activity-Based Protein Profiling

Porcine reproductive and respiratory syndrome (PRRS) seriously endangers the sustainable development of the pig industry. Our previous studies have shown that matrine can resist porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study aimed to explore the anti-PRRSV targets...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-07, Vol.24 (14), p.11526
Main Authors: Ling, Xiaoya, Cao, Zhigang, Sun, Panpan, Zhang, Hua, Sun, Yaogui, Zhong, Jia, Yin, Wei, Fan, Kuohai, Zheng, Xiaozhong, Li, Hongquan, Sun, Na
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Porcine reproductive and respiratory syndrome (PRRS) seriously endangers the sustainable development of the pig industry. Our previous studies have shown that matrine can resist porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study aimed to explore the anti-PRRSV targets of matrine in Marc-145 cells. Biotin-labeled matrine 1 and 2 were used as probes. MTT assay was used to determine the maximum non-cytotoxic concentration (MNTC) of each probe in Marc-145 cells. The anti-PRRSV activity of each probe was evaluated via MTT, qPCR and Western blot, and its anti-inflammatory activity was evaluated via qPCR and Western blot. The targets of matrine in Marc-145 cells were searched using activity-based protein profiling (ABPP), and compared with the targets predicted via network pharmacology for screening the potential targets of matrine against PRRSV. The protein-protein interaction networks (PPI) of potential targets were constructed using a network database and GO/KEGG enrichment analysis was performed. ACAT1, ALB, HMOX1, HSPA8, HSP90AB1, PARP1 and STAT1 were identified as potential targets of matrine, and their functions were related to antiviral capacity and immunity. Matrine may play an anti-PRRSV role by directly acting on ACAT1, ALB, HMOX1, HSPA8, HSP90AB1, PARP1 and STAT1.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241411526