Loading…

Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera

Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and imag...

Full description

Saved in:
Bibliographic Details
Published in:PhotoniX 2024-12, Vol.5 (1), p.25-12
Main Authors: Chen, Wenwu, Feng, Shijie, Yin, Wei, Li, Yixuan, Qian, Jiaming, Chen, Qian, Zuo, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-d334t-3ffcc78d419490bfd810310ce9c9f10d65b41f5f6f9f32c6a666ae6260c8dff3
container_end_page 12
container_issue 1
container_start_page 25
container_title PhotoniX
container_volume 5
creator Chen, Wenwu
Feng, Shijie
Yin, Wei
Li, Yixuan
Qian, Jiaming
Chen, Qian
Zuo, Chao
description Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and image acquisition mechanism, the temporal resolution of conventional structured light or fringe projection profilometry (FPP) based 3D imaging methods is still limited to the native detector frame rates. In this work, we demonstrate a new 3D imaging method, termed deep-learning-enabled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional low-speed cameras. By encoding temporal information in one multiplexed fringe pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, phase-shifting and ensemble learning to decompose the pattern and analyze separate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution over conventional computational imaging techniques. We demonstrate this method by measuring different types of transient scenes, including rotating fan blades and bullet fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results establish that DLMFPP allows slow-scan cameras with their known advantages in terms of cost and spatial resolution to be used for high-speed 3D imaging tasks.
doi_str_mv 10.1186/s43074-024-00139-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7725092f173c4b579a1418c2384ba5e7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7725092f173c4b579a1418c2384ba5e7</doaj_id><sourcerecordid>3094598847</sourcerecordid><originalsourceid>FETCH-LOGICAL-d334t-3ffcc78d419490bfd810310ce9c9f10d65b41f5f6f9f32c6a666ae6260c8dff3</originalsourceid><addsrcrecordid>eNpFUctOwzAQjJCQQIUf4BSJs8GvODE3VF6VkLhwtxxn3bo4cbBToPwCP43bInFY7Wp3djS7UxQXBF8R0ojrxBmuOcI0ByZMInpUnFIhKCJSkpPiPKU1xpjWknFJT4ufO4ARedBxcMMSwaBbD105QT-GqL3flmkzQkQRUvAfedJv_ORGD1-5tjHvQDnGsAYzuTDsSut86GGK25ty5ZYrlEbI0Len75Ldla7Xy7xTfrppVfrw-Tc1uoeoz4pjq32C8788K14f7l_nT-j55XExv31GHWN8QsxaY-qm40RyiVvbNQQzgg1IIy3BnahaTmxlhZWWUSO0EEKDoAKbprOWzYrFgbYLeq3GmDXFrQraqX0jxKXScXLGg6prWmFJLamZ4W1VS004aQxlDW91BXXmujxw5cPfN5AmtQ6bOGT1imHJK9k0fIdiB1Qa9x-L_yiC1c43dfBNZd_U3jdF2S_h1o9P</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094598847</pqid></control><display><type>article</type><title>Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Chen, Wenwu ; Feng, Shijie ; Yin, Wei ; Li, Yixuan ; Qian, Jiaming ; Chen, Qian ; Zuo, Chao</creator><creatorcontrib>Chen, Wenwu ; Feng, Shijie ; Yin, Wei ; Li, Yixuan ; Qian, Jiaming ; Chen, Qian ; Zuo, Chao</creatorcontrib><description>Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and image acquisition mechanism, the temporal resolution of conventional structured light or fringe projection profilometry (FPP) based 3D imaging methods is still limited to the native detector frame rates. In this work, we demonstrate a new 3D imaging method, termed deep-learning-enabled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional low-speed cameras. By encoding temporal information in one multiplexed fringe pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, phase-shifting and ensemble learning to decompose the pattern and analyze separate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution over conventional computational imaging techniques. We demonstrate this method by measuring different types of transient scenes, including rotating fan blades and bullet fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results establish that DLMFPP allows slow-scan cameras with their known advantages in terms of cost and spatial resolution to be used for high-speed 3D imaging tasks.</description><identifier>EISSN: 2662-1991</identifier><identifier>DOI: 10.1186/s43074-024-00139-2</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>3D imaging ; Cameras ; Deep learning ; Engineering ; Fourier transforms ; Fringe projection profilometry ; Microwaves ; Multiplex ; RF and Optical Engineering ; Speed limits ; Temporal super-resolution ; Three dimensional imaging</subject><ispartof>PhotoniX, 2024-12, Vol.5 (1), p.25-12</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-d334t-3ffcc78d419490bfd810310ce9c9f10d65b41f5f6f9f32c6a666ae6260c8dff3</cites><orcidid>0000-0002-1461-0032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3094598847/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3094598847?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Chen, Wenwu</creatorcontrib><creatorcontrib>Feng, Shijie</creatorcontrib><creatorcontrib>Yin, Wei</creatorcontrib><creatorcontrib>Li, Yixuan</creatorcontrib><creatorcontrib>Qian, Jiaming</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Zuo, Chao</creatorcontrib><title>Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera</title><title>PhotoniX</title><addtitle>PhotoniX</addtitle><description>Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and image acquisition mechanism, the temporal resolution of conventional structured light or fringe projection profilometry (FPP) based 3D imaging methods is still limited to the native detector frame rates. In this work, we demonstrate a new 3D imaging method, termed deep-learning-enabled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional low-speed cameras. By encoding temporal information in one multiplexed fringe pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, phase-shifting and ensemble learning to decompose the pattern and analyze separate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution over conventional computational imaging techniques. We demonstrate this method by measuring different types of transient scenes, including rotating fan blades and bullet fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results establish that DLMFPP allows slow-scan cameras with their known advantages in terms of cost and spatial resolution to be used for high-speed 3D imaging tasks.</description><subject>3D imaging</subject><subject>Cameras</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Fringe projection profilometry</subject><subject>Microwaves</subject><subject>Multiplex</subject><subject>RF and Optical Engineering</subject><subject>Speed limits</subject><subject>Temporal super-resolution</subject><subject>Three dimensional imaging</subject><issn>2662-1991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpFUctOwzAQjJCQQIUf4BSJs8GvODE3VF6VkLhwtxxn3bo4cbBToPwCP43bInFY7Wp3djS7UxQXBF8R0ojrxBmuOcI0ByZMInpUnFIhKCJSkpPiPKU1xpjWknFJT4ufO4ARedBxcMMSwaBbD105QT-GqL3flmkzQkQRUvAfedJv_ORGD1-5tjHvQDnGsAYzuTDsSut86GGK25ty5ZYrlEbI0Len75Ldla7Xy7xTfrppVfrw-Tc1uoeoz4pjq32C8788K14f7l_nT-j55XExv31GHWN8QsxaY-qm40RyiVvbNQQzgg1IIy3BnahaTmxlhZWWUSO0EEKDoAKbprOWzYrFgbYLeq3GmDXFrQraqX0jxKXScXLGg6prWmFJLamZ4W1VS004aQxlDW91BXXmujxw5cPfN5AmtQ6bOGT1imHJK9k0fIdiB1Qa9x-L_yiC1c43dfBNZd_U3jdF2S_h1o9P</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Chen, Wenwu</creator><creator>Feng, Shijie</creator><creator>Yin, Wei</creator><creator>Li, Yixuan</creator><creator>Qian, Jiaming</creator><creator>Chen, Qian</creator><creator>Zuo, Chao</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1461-0032</orcidid></search><sort><creationdate>20241201</creationdate><title>Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera</title><author>Chen, Wenwu ; Feng, Shijie ; Yin, Wei ; Li, Yixuan ; Qian, Jiaming ; Chen, Qian ; Zuo, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d334t-3ffcc78d419490bfd810310ce9c9f10d65b41f5f6f9f32c6a666ae6260c8dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D imaging</topic><topic>Cameras</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Fringe projection profilometry</topic><topic>Microwaves</topic><topic>Multiplex</topic><topic>RF and Optical Engineering</topic><topic>Speed limits</topic><topic>Temporal super-resolution</topic><topic>Three dimensional imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wenwu</creatorcontrib><creatorcontrib>Feng, Shijie</creatorcontrib><creatorcontrib>Yin, Wei</creatorcontrib><creatorcontrib>Li, Yixuan</creatorcontrib><creatorcontrib>Qian, Jiaming</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Zuo, Chao</creatorcontrib><collection>SpringerOpen</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>PhotoniX</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wenwu</au><au>Feng, Shijie</au><au>Yin, Wei</au><au>Li, Yixuan</au><au>Qian, Jiaming</au><au>Chen, Qian</au><au>Zuo, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera</atitle><jtitle>PhotoniX</jtitle><stitle>PhotoniX</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>5</volume><issue>1</issue><spage>25</spage><epage>12</epage><pages>25-12</pages><eissn>2662-1991</eissn><abstract>Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and image acquisition mechanism, the temporal resolution of conventional structured light or fringe projection profilometry (FPP) based 3D imaging methods is still limited to the native detector frame rates. In this work, we demonstrate a new 3D imaging method, termed deep-learning-enabled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional low-speed cameras. By encoding temporal information in one multiplexed fringe pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, phase-shifting and ensemble learning to decompose the pattern and analyze separate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution over conventional computational imaging techniques. We demonstrate this method by measuring different types of transient scenes, including rotating fan blades and bullet fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results establish that DLMFPP allows slow-scan cameras with their known advantages in terms of cost and spatial resolution to be used for high-speed 3D imaging tasks.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1186/s43074-024-00139-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1461-0032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2662-1991
ispartof PhotoniX, 2024-12, Vol.5 (1), p.25-12
issn 2662-1991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7725092f173c4b579a1418c2384ba5e7
source Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest)
subjects 3D imaging
Cameras
Deep learning
Engineering
Fourier transforms
Fringe projection profilometry
Microwaves
Multiplex
RF and Optical Engineering
Speed limits
Temporal super-resolution
Three dimensional imaging
title Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-learning-enabled%20temporally%20super-resolved%20multiplexed%20fringe%20projection%20profilometry:%20high-speed%20kHz%203D%20imaging%20with%20low-speed%20camera&rft.jtitle=PhotoniX&rft.au=Chen,%20Wenwu&rft.date=2024-12-01&rft.volume=5&rft.issue=1&rft.spage=25&rft.epage=12&rft.pages=25-12&rft.eissn=2662-1991&rft_id=info:doi/10.1186/s43074-024-00139-2&rft_dat=%3Cproquest_doaj_%3E3094598847%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d334t-3ffcc78d419490bfd810310ce9c9f10d65b41f5f6f9f32c6a666ae6260c8dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094598847&rft_id=info:pmid/&rfr_iscdi=true