Loading…
Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera
Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and imag...
Saved in:
Published in: | PhotoniX 2024-12, Vol.5 (1), p.25-12 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-d334t-3ffcc78d419490bfd810310ce9c9f10d65b41f5f6f9f32c6a666ae6260c8dff3 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 25 |
container_title | PhotoniX |
container_volume | 5 |
creator | Chen, Wenwu Feng, Shijie Yin, Wei Li, Yixuan Qian, Jiaming Chen, Qian Zuo, Chao |
description | Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and image acquisition mechanism, the temporal resolution of conventional structured light or fringe projection profilometry (FPP) based 3D imaging methods is still limited to the native detector frame rates. In this work, we demonstrate a new 3D imaging method, termed deep-learning-enabled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional low-speed cameras. By encoding temporal information in one multiplexed fringe pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, phase-shifting and ensemble learning to decompose the pattern and analyze separate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution over conventional computational imaging techniques. We demonstrate this method by measuring different types of transient scenes, including rotating fan blades and bullet fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results establish that DLMFPP allows slow-scan cameras with their known advantages in terms of cost and spatial resolution to be used for high-speed 3D imaging tasks. |
doi_str_mv | 10.1186/s43074-024-00139-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7725092f173c4b579a1418c2384ba5e7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7725092f173c4b579a1418c2384ba5e7</doaj_id><sourcerecordid>3094598847</sourcerecordid><originalsourceid>FETCH-LOGICAL-d334t-3ffcc78d419490bfd810310ce9c9f10d65b41f5f6f9f32c6a666ae6260c8dff3</originalsourceid><addsrcrecordid>eNpFUctOwzAQjJCQQIUf4BSJs8GvODE3VF6VkLhwtxxn3bo4cbBToPwCP43bInFY7Wp3djS7UxQXBF8R0ojrxBmuOcI0ByZMInpUnFIhKCJSkpPiPKU1xpjWknFJT4ufO4ARedBxcMMSwaBbD105QT-GqL3flmkzQkQRUvAfedJv_ORGD1-5tjHvQDnGsAYzuTDsSut86GGK25ty5ZYrlEbI0Len75Ldla7Xy7xTfrppVfrw-Tc1uoeoz4pjq32C8788K14f7l_nT-j55XExv31GHWN8QsxaY-qm40RyiVvbNQQzgg1IIy3BnahaTmxlhZWWUSO0EEKDoAKbprOWzYrFgbYLeq3GmDXFrQraqX0jxKXScXLGg6prWmFJLamZ4W1VS004aQxlDW91BXXmujxw5cPfN5AmtQ6bOGT1imHJK9k0fIdiB1Qa9x-L_yiC1c43dfBNZd_U3jdF2S_h1o9P</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094598847</pqid></control><display><type>article</type><title>Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Chen, Wenwu ; Feng, Shijie ; Yin, Wei ; Li, Yixuan ; Qian, Jiaming ; Chen, Qian ; Zuo, Chao</creator><creatorcontrib>Chen, Wenwu ; Feng, Shijie ; Yin, Wei ; Li, Yixuan ; Qian, Jiaming ; Chen, Qian ; Zuo, Chao</creatorcontrib><description>Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and image acquisition mechanism, the temporal resolution of conventional structured light or fringe projection profilometry (FPP) based 3D imaging methods is still limited to the native detector frame rates. In this work, we demonstrate a new 3D imaging method, termed deep-learning-enabled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional low-speed cameras. By encoding temporal information in one multiplexed fringe pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, phase-shifting and ensemble learning to decompose the pattern and analyze separate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution over conventional computational imaging techniques. We demonstrate this method by measuring different types of transient scenes, including rotating fan blades and bullet fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results establish that DLMFPP allows slow-scan cameras with their known advantages in terms of cost and spatial resolution to be used for high-speed 3D imaging tasks.</description><identifier>EISSN: 2662-1991</identifier><identifier>DOI: 10.1186/s43074-024-00139-2</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>3D imaging ; Cameras ; Deep learning ; Engineering ; Fourier transforms ; Fringe projection profilometry ; Microwaves ; Multiplex ; RF and Optical Engineering ; Speed limits ; Temporal super-resolution ; Three dimensional imaging</subject><ispartof>PhotoniX, 2024-12, Vol.5 (1), p.25-12</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-d334t-3ffcc78d419490bfd810310ce9c9f10d65b41f5f6f9f32c6a666ae6260c8dff3</cites><orcidid>0000-0002-1461-0032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3094598847/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3094598847?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Chen, Wenwu</creatorcontrib><creatorcontrib>Feng, Shijie</creatorcontrib><creatorcontrib>Yin, Wei</creatorcontrib><creatorcontrib>Li, Yixuan</creatorcontrib><creatorcontrib>Qian, Jiaming</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Zuo, Chao</creatorcontrib><title>Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera</title><title>PhotoniX</title><addtitle>PhotoniX</addtitle><description>Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and image acquisition mechanism, the temporal resolution of conventional structured light or fringe projection profilometry (FPP) based 3D imaging methods is still limited to the native detector frame rates. In this work, we demonstrate a new 3D imaging method, termed deep-learning-enabled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional low-speed cameras. By encoding temporal information in one multiplexed fringe pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, phase-shifting and ensemble learning to decompose the pattern and analyze separate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution over conventional computational imaging techniques. We demonstrate this method by measuring different types of transient scenes, including rotating fan blades and bullet fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results establish that DLMFPP allows slow-scan cameras with their known advantages in terms of cost and spatial resolution to be used for high-speed 3D imaging tasks.</description><subject>3D imaging</subject><subject>Cameras</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Fringe projection profilometry</subject><subject>Microwaves</subject><subject>Multiplex</subject><subject>RF and Optical Engineering</subject><subject>Speed limits</subject><subject>Temporal super-resolution</subject><subject>Three dimensional imaging</subject><issn>2662-1991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpFUctOwzAQjJCQQIUf4BSJs8GvODE3VF6VkLhwtxxn3bo4cbBToPwCP43bInFY7Wp3djS7UxQXBF8R0ojrxBmuOcI0ByZMInpUnFIhKCJSkpPiPKU1xpjWknFJT4ufO4ARedBxcMMSwaBbD105QT-GqL3flmkzQkQRUvAfedJv_ORGD1-5tjHvQDnGsAYzuTDsSut86GGK25ty5ZYrlEbI0Len75Ldla7Xy7xTfrppVfrw-Tc1uoeoz4pjq32C8788K14f7l_nT-j55XExv31GHWN8QsxaY-qm40RyiVvbNQQzgg1IIy3BnahaTmxlhZWWUSO0EEKDoAKbprOWzYrFgbYLeq3GmDXFrQraqX0jxKXScXLGg6prWmFJLamZ4W1VS004aQxlDW91BXXmujxw5cPfN5AmtQ6bOGT1imHJK9k0fIdiB1Qa9x-L_yiC1c43dfBNZd_U3jdF2S_h1o9P</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Chen, Wenwu</creator><creator>Feng, Shijie</creator><creator>Yin, Wei</creator><creator>Li, Yixuan</creator><creator>Qian, Jiaming</creator><creator>Chen, Qian</creator><creator>Zuo, Chao</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1461-0032</orcidid></search><sort><creationdate>20241201</creationdate><title>Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera</title><author>Chen, Wenwu ; Feng, Shijie ; Yin, Wei ; Li, Yixuan ; Qian, Jiaming ; Chen, Qian ; Zuo, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d334t-3ffcc78d419490bfd810310ce9c9f10d65b41f5f6f9f32c6a666ae6260c8dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D imaging</topic><topic>Cameras</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Fringe projection profilometry</topic><topic>Microwaves</topic><topic>Multiplex</topic><topic>RF and Optical Engineering</topic><topic>Speed limits</topic><topic>Temporal super-resolution</topic><topic>Three dimensional imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wenwu</creatorcontrib><creatorcontrib>Feng, Shijie</creatorcontrib><creatorcontrib>Yin, Wei</creatorcontrib><creatorcontrib>Li, Yixuan</creatorcontrib><creatorcontrib>Qian, Jiaming</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Zuo, Chao</creatorcontrib><collection>SpringerOpen</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>PhotoniX</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wenwu</au><au>Feng, Shijie</au><au>Yin, Wei</au><au>Li, Yixuan</au><au>Qian, Jiaming</au><au>Chen, Qian</au><au>Zuo, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera</atitle><jtitle>PhotoniX</jtitle><stitle>PhotoniX</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>5</volume><issue>1</issue><spage>25</spage><epage>12</epage><pages>25-12</pages><eissn>2662-1991</eissn><abstract>Recent advances in imaging sensors and digital light projection technology have facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with high resolution and accuracy. Nevertheless, due to the inherent synchronous pattern projection and image acquisition mechanism, the temporal resolution of conventional structured light or fringe projection profilometry (FPP) based 3D imaging methods is still limited to the native detector frame rates. In this work, we demonstrate a new 3D imaging method, termed deep-learning-enabled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional low-speed cameras. By encoding temporal information in one multiplexed fringe pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, phase-shifting and ensemble learning to decompose the pattern and analyze separate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution over conventional computational imaging techniques. We demonstrate this method by measuring different types of transient scenes, including rotating fan blades and bullet fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results establish that DLMFPP allows slow-scan cameras with their known advantages in terms of cost and spatial resolution to be used for high-speed 3D imaging tasks.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1186/s43074-024-00139-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1461-0032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2662-1991 |
ispartof | PhotoniX, 2024-12, Vol.5 (1), p.25-12 |
issn | 2662-1991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7725092f173c4b579a1418c2384ba5e7 |
source | Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest) |
subjects | 3D imaging Cameras Deep learning Engineering Fourier transforms Fringe projection profilometry Microwaves Multiplex RF and Optical Engineering Speed limits Temporal super-resolution Three dimensional imaging |
title | Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-learning-enabled%20temporally%20super-resolved%20multiplexed%20fringe%20projection%20profilometry:%20high-speed%20kHz%203D%20imaging%20with%20low-speed%20camera&rft.jtitle=PhotoniX&rft.au=Chen,%20Wenwu&rft.date=2024-12-01&rft.volume=5&rft.issue=1&rft.spage=25&rft.epage=12&rft.pages=25-12&rft.eissn=2662-1991&rft_id=info:doi/10.1186/s43074-024-00139-2&rft_dat=%3Cproquest_doaj_%3E3094598847%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d334t-3ffcc78d419490bfd810310ce9c9f10d65b41f5f6f9f32c6a666ae6260c8dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094598847&rft_id=info:pmid/&rfr_iscdi=true |