Loading…

The role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics

Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate...

Full description

Saved in:
Bibliographic Details
Published in:Biogeosciences 2015-10, Vol.12 (19), p.5811-5829
Main Authors: Yi, Y, Kimball, J. S, Rawlins, M. A, Moghaddam, M, Euskirchen, E. S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c543t-c31afaf0d295a498c30dff564e8f8f1f16c8f489b1d34862535a59a44f4646f53
cites cdi_FETCH-LOGICAL-c543t-c31afaf0d295a498c30dff564e8f8f1f16c8f489b1d34862535a59a44f4646f53
container_end_page 5829
container_issue 19
container_start_page 5811
container_title Biogeosciences
container_volume 12
creator Yi, Y
Kimball, J. S
Rawlins, M. A
Moghaddam, M
Euskirchen, E. S
description Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (~ 0.8–1.3 days decade−1) in the mean annual snow cover extent and frozen-season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with a detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to climate warming and changes in snow cover conditions in the pan-Arctic region over the past 3 decades (1982–2010). Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD) cm, corresponding to widespread warming. Warming promotes vegetation growth and soil heterotrophic respiration particularly within surface soil layers (≤ 0.2 m). The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m) soil layers, especially in colder climate zones (mean annual T ≤ −10 °C). Our results demonstrate the important control of snow cover on northern soil freeze–thaw and soil carbon decomposition processes and the necessity of considering both warming and a change in precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.
doi_str_mv 10.5194/bg-12-5811-2015
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7725321c79d14bae9a1497c31758c62b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481552194</galeid><doaj_id>oai_doaj_org_article_7725321c79d14bae9a1497c31758c62b</doaj_id><sourcerecordid>A481552194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-c31afaf0d295a498c30dff564e8f8f1f16c8f489b1d34862535a59a44f4646f53</originalsourceid><addsrcrecordid>eNptks9O3DAQxqOqlUppz71a6qmHQMZ_EvuIUFtWQkKicLYmjidklY3BzhboiXfgDXkSvF1UulLlgz2j33z6bH9F8RmqAwVGHrZ9CbxUGqDkFag3xR40vC4laPP2n_P74kNKy6oSutJqr7i8uPIshtGzQCxN4Za58MtHhkTezcPUszZEj2OJMZeOpTCMjKL3v_3Tw-N8hbcMp445jG2YWHc_4Wpw6WPxjnBM_tPLvl9cfv92cXxSnp79WBwfnZZOSTGXTgASUtVxo1Aa7UTVEalaek2agKB2mqQ2LXRC6poroVAZlJJkLWtSYr9YbHW7gEt7HYcVxnsbcLB_GiH2FmO2PXrbNHmcg2tMB7JFbxCkabKDRmlX8zZrfdlqXcdws_ZptsuwjlO2b7kEKUWjdf1K9ZhFh4nCHNGthuTskdSgFM9_kamD_1B5dT4_T5g8Dbm_M_B1ZyAzs7-be1ynZBc_z3fZwy3rYkgpevp7cajsJgq27S1wu4mC3URBPANDn6Pe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414437886</pqid></control><display><type>article</type><title>The role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics</title><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Yi, Y ; Kimball, J. S ; Rawlins, M. A ; Moghaddam, M ; Euskirchen, E. S</creator><creatorcontrib>Yi, Y ; Kimball, J. S ; Rawlins, M. A ; Moghaddam, M ; Euskirchen, E. S</creatorcontrib><description>Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (~ 0.8–1.3 days decade−1) in the mean annual snow cover extent and frozen-season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with a detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to climate warming and changes in snow cover conditions in the pan-Arctic region over the past 3 decades (1982–2010). Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD) cm, corresponding to widespread warming. Warming promotes vegetation growth and soil heterotrophic respiration particularly within surface soil layers (≤ 0.2 m). The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m) soil layers, especially in colder climate zones (mean annual T ≤ −10 °C). Our results demonstrate the important control of snow cover on northern soil freeze–thaw and soil carbon decomposition processes and the necessity of considering both warming and a change in precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.</description><identifier>ISSN: 1726-4189</identifier><identifier>ISSN: 1726-4170</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-12-5811-2015</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Active layer ; Analysis ; Arctic soils ; Arctic zone ; Carbon ; Climate ; Climate change ; Computer simulation ; Decomposition ; Dynamics ; Freeze-thawing ; Global climate ; Global warming ; Heat transfer ; Hydrologic models ; Hydrology ; Ice environments ; Investigations ; Northern Hemisphere ; Organic carbon ; Organic soils ; Permafrost ; Precipitation ; Regional climates ; Regional development ; Respiration ; Satellite data ; Seasons ; Snow ; Snow cover ; Snow cover conditions ; Soil ; Soil carbon ; Soil dynamics ; Soil heat transfer ; Soil investigations ; Soil layers ; Soil respiration ; Soil surfaces ; Soil temperature ; Soils ; Stocks ; Trends ; Vegetation growth</subject><ispartof>Biogeosciences, 2015-10, Vol.12 (19), p.5811-5829</ispartof><rights>COPYRIGHT 2015 Copernicus GmbH</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-c31afaf0d295a498c30dff564e8f8f1f16c8f489b1d34862535a59a44f4646f53</citedby><cites>FETCH-LOGICAL-c543t-c31afaf0d295a498c30dff564e8f8f1f16c8f489b1d34862535a59a44f4646f53</cites><orcidid>0000-0002-0848-4295 ; 0000-0002-3323-8256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414437886/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414437886?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,25728,27898,27899,36986,44563,75093</link.rule.ids></links><search><creatorcontrib>Yi, Y</creatorcontrib><creatorcontrib>Kimball, J. S</creatorcontrib><creatorcontrib>Rawlins, M. A</creatorcontrib><creatorcontrib>Moghaddam, M</creatorcontrib><creatorcontrib>Euskirchen, E. S</creatorcontrib><title>The role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics</title><title>Biogeosciences</title><description>Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (~ 0.8–1.3 days decade−1) in the mean annual snow cover extent and frozen-season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with a detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to climate warming and changes in snow cover conditions in the pan-Arctic region over the past 3 decades (1982–2010). Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD) cm, corresponding to widespread warming. Warming promotes vegetation growth and soil heterotrophic respiration particularly within surface soil layers (≤ 0.2 m). The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m) soil layers, especially in colder climate zones (mean annual T ≤ −10 °C). Our results demonstrate the important control of snow cover on northern soil freeze–thaw and soil carbon decomposition processes and the necessity of considering both warming and a change in precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.</description><subject>Active layer</subject><subject>Analysis</subject><subject>Arctic soils</subject><subject>Arctic zone</subject><subject>Carbon</subject><subject>Climate</subject><subject>Climate change</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>Dynamics</subject><subject>Freeze-thawing</subject><subject>Global climate</subject><subject>Global warming</subject><subject>Heat transfer</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Ice environments</subject><subject>Investigations</subject><subject>Northern Hemisphere</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Permafrost</subject><subject>Precipitation</subject><subject>Regional climates</subject><subject>Regional development</subject><subject>Respiration</subject><subject>Satellite data</subject><subject>Seasons</subject><subject>Snow</subject><subject>Snow cover</subject><subject>Snow cover conditions</subject><subject>Soil</subject><subject>Soil carbon</subject><subject>Soil dynamics</subject><subject>Soil heat transfer</subject><subject>Soil investigations</subject><subject>Soil layers</subject><subject>Soil respiration</subject><subject>Soil surfaces</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Stocks</subject><subject>Trends</subject><subject>Vegetation growth</subject><issn>1726-4189</issn><issn>1726-4170</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9O3DAQxqOqlUppz71a6qmHQMZ_EvuIUFtWQkKicLYmjidklY3BzhboiXfgDXkSvF1UulLlgz2j33z6bH9F8RmqAwVGHrZ9CbxUGqDkFag3xR40vC4laPP2n_P74kNKy6oSutJqr7i8uPIshtGzQCxN4Za58MtHhkTezcPUszZEj2OJMZeOpTCMjKL3v_3Tw-N8hbcMp445jG2YWHc_4Wpw6WPxjnBM_tPLvl9cfv92cXxSnp79WBwfnZZOSTGXTgASUtVxo1Aa7UTVEalaek2agKB2mqQ2LXRC6poroVAZlJJkLWtSYr9YbHW7gEt7HYcVxnsbcLB_GiH2FmO2PXrbNHmcg2tMB7JFbxCkabKDRmlX8zZrfdlqXcdws_ZptsuwjlO2b7kEKUWjdf1K9ZhFh4nCHNGthuTskdSgFM9_kamD_1B5dT4_T5g8Dbm_M_B1ZyAzs7-be1ynZBc_z3fZwy3rYkgpevp7cajsJgq27S1wu4mC3URBPANDn6Pe</recordid><startdate>20151013</startdate><enddate>20151013</enddate><creator>Yi, Y</creator><creator>Kimball, J. S</creator><creator>Rawlins, M. A</creator><creator>Moghaddam, M</creator><creator>Euskirchen, E. S</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0848-4295</orcidid><orcidid>https://orcid.org/0000-0002-3323-8256</orcidid></search><sort><creationdate>20151013</creationdate><title>The role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics</title><author>Yi, Y ; Kimball, J. S ; Rawlins, M. A ; Moghaddam, M ; Euskirchen, E. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-c31afaf0d295a498c30dff564e8f8f1f16c8f489b1d34862535a59a44f4646f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active layer</topic><topic>Analysis</topic><topic>Arctic soils</topic><topic>Arctic zone</topic><topic>Carbon</topic><topic>Climate</topic><topic>Climate change</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>Dynamics</topic><topic>Freeze-thawing</topic><topic>Global climate</topic><topic>Global warming</topic><topic>Heat transfer</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Ice environments</topic><topic>Investigations</topic><topic>Northern Hemisphere</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Permafrost</topic><topic>Precipitation</topic><topic>Regional climates</topic><topic>Regional development</topic><topic>Respiration</topic><topic>Satellite data</topic><topic>Seasons</topic><topic>Snow</topic><topic>Snow cover</topic><topic>Snow cover conditions</topic><topic>Soil</topic><topic>Soil carbon</topic><topic>Soil dynamics</topic><topic>Soil heat transfer</topic><topic>Soil investigations</topic><topic>Soil layers</topic><topic>Soil respiration</topic><topic>Soil surfaces</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Stocks</topic><topic>Trends</topic><topic>Vegetation growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Y</creatorcontrib><creatorcontrib>Kimball, J. S</creatorcontrib><creatorcontrib>Rawlins, M. A</creatorcontrib><creatorcontrib>Moghaddam, M</creatorcontrib><creatorcontrib>Euskirchen, E. S</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Y</au><au>Kimball, J. S</au><au>Rawlins, M. A</au><au>Moghaddam, M</au><au>Euskirchen, E. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics</atitle><jtitle>Biogeosciences</jtitle><date>2015-10-13</date><risdate>2015</risdate><volume>12</volume><issue>19</issue><spage>5811</spage><epage>5829</epage><pages>5811-5829</pages><issn>1726-4189</issn><issn>1726-4170</issn><eissn>1726-4189</eissn><abstract>Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (~ 0.8–1.3 days decade−1) in the mean annual snow cover extent and frozen-season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with a detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to climate warming and changes in snow cover conditions in the pan-Arctic region over the past 3 decades (1982–2010). Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD) cm, corresponding to widespread warming. Warming promotes vegetation growth and soil heterotrophic respiration particularly within surface soil layers (≤ 0.2 m). The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m) soil layers, especially in colder climate zones (mean annual T ≤ −10 °C). Our results demonstrate the important control of snow cover on northern soil freeze–thaw and soil carbon decomposition processes and the necessity of considering both warming and a change in precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/bg-12-5811-2015</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0848-4295</orcidid><orcidid>https://orcid.org/0000-0002-3323-8256</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1726-4189
ispartof Biogeosciences, 2015-10, Vol.12 (19), p.5811-5829
issn 1726-4189
1726-4170
1726-4189
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7725321c79d14bae9a1497c31758c62b
source DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest)
subjects Active layer
Analysis
Arctic soils
Arctic zone
Carbon
Climate
Climate change
Computer simulation
Decomposition
Dynamics
Freeze-thawing
Global climate
Global warming
Heat transfer
Hydrologic models
Hydrology
Ice environments
Investigations
Northern Hemisphere
Organic carbon
Organic soils
Permafrost
Precipitation
Regional climates
Regional development
Respiration
Satellite data
Seasons
Snow
Snow cover
Snow cover conditions
Soil
Soil carbon
Soil dynamics
Soil heat transfer
Soil investigations
Soil layers
Soil respiration
Soil surfaces
Soil temperature
Soils
Stocks
Trends
Vegetation growth
title The role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T22%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20snow%20cover%20affecting%20boreal-arctic%20soil%20freeze%E2%80%93thaw%20and%20carbon%20dynamics&rft.jtitle=Biogeosciences&rft.au=Yi,%20Y&rft.date=2015-10-13&rft.volume=12&rft.issue=19&rft.spage=5811&rft.epage=5829&rft.pages=5811-5829&rft.issn=1726-4189&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-12-5811-2015&rft_dat=%3Cgale_doaj_%3EA481552194%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c543t-c31afaf0d295a498c30dff564e8f8f1f16c8f489b1d34862535a59a44f4646f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414437886&rft_id=info:pmid/&rft_galeid=A481552194&rfr_iscdi=true