Loading…

A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators

This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of robotics 2018-01, Vol.2018 (2018), p.1-15
Main Authors: Reyes-Cortés, Fernando, González-Galván, Emilio J., Chávez-Olivares, César
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3
cites cdi_FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3
container_end_page 15
container_issue 2018
container_start_page 1
container_title Journal of robotics
container_volume 2018
creator Reyes-Cortés, Fernando
González-Galván, Emilio J.
Chávez-Olivares, César
description This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocity damping term with the purpose of obtaining energy dissipation on the contact surface is incorporated plus compensation for gravity. In order to ensure asymptotic stability of the closed-loop system equilibrium point in Cartesian space, we propose a strict Lyapunov function. A force sensor placed at the end-effector of the robot manipulator is used in order to feed back the measure of the force error in the closed-loop, and an experimental comparison of the performance L2-norm between 5 explicit force control schemes, which are the classical proportional-derivative (PD), arctangent, and square-root controls and two members of the proposed control family, on a two-degree-of-freedom, direct-drive robot manipulator, is presented.
doi_str_mv 10.1155/2018/9324623
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_772e3f63dbef4f8d933dacccbeb5575d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_772e3f63dbef4f8d933dacccbeb5575d</doaj_id><sourcerecordid>2032377067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3</originalsourceid><addsrcrecordid>eNqFkc1P4zAQxSMEEhVw44wscVwC_ojj-FixlCKxWgkBV2vijFtXaZ110u32v8dsKva4c5mn0W_ejPSy7JLRW8akvOOUVXda8KLk4iibsLJSuS6ZPv7SlJ5mF32_oqmE5pqpSeanZAZr3-5JcGS-7zDWofU2f02SPPzpkvYDmYVokbzgYtvCEGJPdn5Ykqkd_G8k79iGBO3Jd1h3frMgLkTyEuowkB-w8d1h5zw7cdD2eHHoZ9nb7OH1fp4__3x8up8-51ZyNeQlrTjWzDmlJGqKDHTRgHTgaipFUQGzglFVVKrQWFVSMwBwrlBSU4esFmfZ0-jbBFiZLvo1xL0J4M3fQYgLA3HwtkWjFEfhStHU6ApXNVqIBqy1NdZSKtkkr-vRq4vh1xb7wazCNm7S-4ZTwYVStFSJuhkpG0PfR3RfVxk1n9mYz2zMIZuEfxvxpd80sPP_o69GGhODDv7RTCtNC_EBosWYUw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032377067</pqid></control><display><type>article</type><title>A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Reyes-Cortés, Fernando ; González-Galván, Emilio J. ; Chávez-Olivares, César</creator><contributor>Fortuna, L.</contributor><creatorcontrib>Reyes-Cortés, Fernando ; González-Galván, Emilio J. ; Chávez-Olivares, César ; Fortuna, L.</creatorcontrib><description>This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocity damping term with the purpose of obtaining energy dissipation on the contact surface is incorporated plus compensation for gravity. In order to ensure asymptotic stability of the closed-loop system equilibrium point in Cartesian space, we propose a strict Lyapunov function. A force sensor placed at the end-effector of the robot manipulator is used in order to feed back the measure of the force error in the closed-loop, and an experimental comparison of the performance L2-norm between 5 explicit force control schemes, which are the classical proportional-derivative (PD), arctangent, and square-root controls and two members of the proposed control family, on a two-degree-of-freedom, direct-drive robot manipulator, is presented.</description><identifier>ISSN: 1687-9600</identifier><identifier>EISSN: 1687-9619</identifier><identifier>DOI: 10.1155/2018/9324623</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Active damping ; Automation ; Control algorithms ; Controllers ; Decomposition ; Energy dissipation ; Error analysis ; Feedback ; Hyperbolic functions ; Liapunov functions ; Manipulators ; Mathematical problems ; Parameter identification ; Regulation ; Robot arms ; Robotics ; Robots ; Simulation ; Velocity</subject><ispartof>Journal of robotics, 2018-01, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 Fernando Reyes-Cortés et al.</rights><rights>Copyright © 2018 Fernando Reyes-Cortés et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3</citedby><cites>FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3</cites><orcidid>0000-0002-5682-0070 ; 0000-0002-9576-1667 ; 0000-0001-5200-7632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2032377067/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2032377067?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565,75095</link.rule.ids></links><search><contributor>Fortuna, L.</contributor><creatorcontrib>Reyes-Cortés, Fernando</creatorcontrib><creatorcontrib>González-Galván, Emilio J.</creatorcontrib><creatorcontrib>Chávez-Olivares, César</creatorcontrib><title>A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators</title><title>Journal of robotics</title><description>This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocity damping term with the purpose of obtaining energy dissipation on the contact surface is incorporated plus compensation for gravity. In order to ensure asymptotic stability of the closed-loop system equilibrium point in Cartesian space, we propose a strict Lyapunov function. A force sensor placed at the end-effector of the robot manipulator is used in order to feed back the measure of the force error in the closed-loop, and an experimental comparison of the performance L2-norm between 5 explicit force control schemes, which are the classical proportional-derivative (PD), arctangent, and square-root controls and two members of the proposed control family, on a two-degree-of-freedom, direct-drive robot manipulator, is presented.</description><subject>Active damping</subject><subject>Automation</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Decomposition</subject><subject>Energy dissipation</subject><subject>Error analysis</subject><subject>Feedback</subject><subject>Hyperbolic functions</subject><subject>Liapunov functions</subject><subject>Manipulators</subject><subject>Mathematical problems</subject><subject>Parameter identification</subject><subject>Regulation</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Robots</subject><subject>Simulation</subject><subject>Velocity</subject><issn>1687-9600</issn><issn>1687-9619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1P4zAQxSMEEhVw44wscVwC_ojj-FixlCKxWgkBV2vijFtXaZ110u32v8dsKva4c5mn0W_ejPSy7JLRW8akvOOUVXda8KLk4iibsLJSuS6ZPv7SlJ5mF32_oqmE5pqpSeanZAZr3-5JcGS-7zDWofU2f02SPPzpkvYDmYVokbzgYtvCEGJPdn5Ykqkd_G8k79iGBO3Jd1h3frMgLkTyEuowkB-w8d1h5zw7cdD2eHHoZ9nb7OH1fp4__3x8up8-51ZyNeQlrTjWzDmlJGqKDHTRgHTgaipFUQGzglFVVKrQWFVSMwBwrlBSU4esFmfZ0-jbBFiZLvo1xL0J4M3fQYgLA3HwtkWjFEfhStHU6ApXNVqIBqy1NdZSKtkkr-vRq4vh1xb7wazCNm7S-4ZTwYVStFSJuhkpG0PfR3RfVxk1n9mYz2zMIZuEfxvxpd80sPP_o69GGhODDv7RTCtNC_EBosWYUw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Reyes-Cortés, Fernando</creator><creator>González-Galván, Emilio J.</creator><creator>Chávez-Olivares, César</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><general>Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5682-0070</orcidid><orcidid>https://orcid.org/0000-0002-9576-1667</orcidid><orcidid>https://orcid.org/0000-0001-5200-7632</orcidid></search><sort><creationdate>20180101</creationdate><title>A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators</title><author>Reyes-Cortés, Fernando ; González-Galván, Emilio J. ; Chávez-Olivares, César</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active damping</topic><topic>Automation</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Decomposition</topic><topic>Energy dissipation</topic><topic>Error analysis</topic><topic>Feedback</topic><topic>Hyperbolic functions</topic><topic>Liapunov functions</topic><topic>Manipulators</topic><topic>Mathematical problems</topic><topic>Parameter identification</topic><topic>Regulation</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Robots</topic><topic>Simulation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes-Cortés, Fernando</creatorcontrib><creatorcontrib>González-Galván, Emilio J.</creatorcontrib><creatorcontrib>Chávez-Olivares, César</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes-Cortés, Fernando</au><au>González-Galván, Emilio J.</au><au>Chávez-Olivares, César</au><au>Fortuna, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators</atitle><jtitle>Journal of robotics</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-9600</issn><eissn>1687-9619</eissn><abstract>This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocity damping term with the purpose of obtaining energy dissipation on the contact surface is incorporated plus compensation for gravity. In order to ensure asymptotic stability of the closed-loop system equilibrium point in Cartesian space, we propose a strict Lyapunov function. A force sensor placed at the end-effector of the robot manipulator is used in order to feed back the measure of the force error in the closed-loop, and an experimental comparison of the performance L2-norm between 5 explicit force control schemes, which are the classical proportional-derivative (PD), arctangent, and square-root controls and two members of the proposed control family, on a two-degree-of-freedom, direct-drive robot manipulator, is presented.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/9324623</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5682-0070</orcidid><orcidid>https://orcid.org/0000-0002-9576-1667</orcidid><orcidid>https://orcid.org/0000-0001-5200-7632</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9600
ispartof Journal of robotics, 2018-01, Vol.2018 (2018), p.1-15
issn 1687-9600
1687-9619
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_772e3f63dbef4f8d933dacccbeb5575d
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Active damping
Automation
Control algorithms
Controllers
Decomposition
Energy dissipation
Error analysis
Feedback
Hyperbolic functions
Liapunov functions
Manipulators
Mathematical problems
Parameter identification
Regulation
Robot arms
Robotics
Robots
Simulation
Velocity
title A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Family%20of%20Hyperbolic-Type%20Explicit%20Force%20Regulators%20with%20Active%20Velocity%20Damping%20for%20Robot%20Manipulators&rft.jtitle=Journal%20of%20robotics&rft.au=Reyes-Cort%C3%A9s,%20Fernando&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-9600&rft.eissn=1687-9619&rft_id=info:doi/10.1155/2018/9324623&rft_dat=%3Cproquest_doaj_%3E2032377067%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2032377067&rft_id=info:pmid/&rfr_iscdi=true