Loading…
A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators
This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocit...
Saved in:
Published in: | Journal of robotics 2018-01, Vol.2018 (2018), p.1-15 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3 |
container_end_page | 15 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Journal of robotics |
container_volume | 2018 |
creator | Reyes-Cortés, Fernando González-Galván, Emilio J. Chávez-Olivares, César |
description | This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocity damping term with the purpose of obtaining energy dissipation on the contact surface is incorporated plus compensation for gravity. In order to ensure asymptotic stability of the closed-loop system equilibrium point in Cartesian space, we propose a strict Lyapunov function. A force sensor placed at the end-effector of the robot manipulator is used in order to feed back the measure of the force error in the closed-loop, and an experimental comparison of the performance L2-norm between 5 explicit force control schemes, which are the classical proportional-derivative (PD), arctangent, and square-root controls and two members of the proposed control family, on a two-degree-of-freedom, direct-drive robot manipulator, is presented. |
doi_str_mv | 10.1155/2018/9324623 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_772e3f63dbef4f8d933dacccbeb5575d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_772e3f63dbef4f8d933dacccbeb5575d</doaj_id><sourcerecordid>2032377067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3</originalsourceid><addsrcrecordid>eNqFkc1P4zAQxSMEEhVw44wscVwC_ojj-FixlCKxWgkBV2vijFtXaZ110u32v8dsKva4c5mn0W_ejPSy7JLRW8akvOOUVXda8KLk4iibsLJSuS6ZPv7SlJ5mF32_oqmE5pqpSeanZAZr3-5JcGS-7zDWofU2f02SPPzpkvYDmYVokbzgYtvCEGJPdn5Ykqkd_G8k79iGBO3Jd1h3frMgLkTyEuowkB-w8d1h5zw7cdD2eHHoZ9nb7OH1fp4__3x8up8-51ZyNeQlrTjWzDmlJGqKDHTRgHTgaipFUQGzglFVVKrQWFVSMwBwrlBSU4esFmfZ0-jbBFiZLvo1xL0J4M3fQYgLA3HwtkWjFEfhStHU6ApXNVqIBqy1NdZSKtkkr-vRq4vh1xb7wazCNm7S-4ZTwYVStFSJuhkpG0PfR3RfVxk1n9mYz2zMIZuEfxvxpd80sPP_o69GGhODDv7RTCtNC_EBosWYUw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032377067</pqid></control><display><type>article</type><title>A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Reyes-Cortés, Fernando ; González-Galván, Emilio J. ; Chávez-Olivares, César</creator><contributor>Fortuna, L.</contributor><creatorcontrib>Reyes-Cortés, Fernando ; González-Galván, Emilio J. ; Chávez-Olivares, César ; Fortuna, L.</creatorcontrib><description>This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocity damping term with the purpose of obtaining energy dissipation on the contact surface is incorporated plus compensation for gravity. In order to ensure asymptotic stability of the closed-loop system equilibrium point in Cartesian space, we propose a strict Lyapunov function. A force sensor placed at the end-effector of the robot manipulator is used in order to feed back the measure of the force error in the closed-loop, and an experimental comparison of the performance L2-norm between 5 explicit force control schemes, which are the classical proportional-derivative (PD), arctangent, and square-root controls and two members of the proposed control family, on a two-degree-of-freedom, direct-drive robot manipulator, is presented.</description><identifier>ISSN: 1687-9600</identifier><identifier>EISSN: 1687-9619</identifier><identifier>DOI: 10.1155/2018/9324623</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Active damping ; Automation ; Control algorithms ; Controllers ; Decomposition ; Energy dissipation ; Error analysis ; Feedback ; Hyperbolic functions ; Liapunov functions ; Manipulators ; Mathematical problems ; Parameter identification ; Regulation ; Robot arms ; Robotics ; Robots ; Simulation ; Velocity</subject><ispartof>Journal of robotics, 2018-01, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 Fernando Reyes-Cortés et al.</rights><rights>Copyright © 2018 Fernando Reyes-Cortés et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3</citedby><cites>FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3</cites><orcidid>0000-0002-5682-0070 ; 0000-0002-9576-1667 ; 0000-0001-5200-7632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2032377067/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2032377067?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565,75095</link.rule.ids></links><search><contributor>Fortuna, L.</contributor><creatorcontrib>Reyes-Cortés, Fernando</creatorcontrib><creatorcontrib>González-Galván, Emilio J.</creatorcontrib><creatorcontrib>Chávez-Olivares, César</creatorcontrib><title>A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators</title><title>Journal of robotics</title><description>This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocity damping term with the purpose of obtaining energy dissipation on the contact surface is incorporated plus compensation for gravity. In order to ensure asymptotic stability of the closed-loop system equilibrium point in Cartesian space, we propose a strict Lyapunov function. A force sensor placed at the end-effector of the robot manipulator is used in order to feed back the measure of the force error in the closed-loop, and an experimental comparison of the performance L2-norm between 5 explicit force control schemes, which are the classical proportional-derivative (PD), arctangent, and square-root controls and two members of the proposed control family, on a two-degree-of-freedom, direct-drive robot manipulator, is presented.</description><subject>Active damping</subject><subject>Automation</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Decomposition</subject><subject>Energy dissipation</subject><subject>Error analysis</subject><subject>Feedback</subject><subject>Hyperbolic functions</subject><subject>Liapunov functions</subject><subject>Manipulators</subject><subject>Mathematical problems</subject><subject>Parameter identification</subject><subject>Regulation</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Robots</subject><subject>Simulation</subject><subject>Velocity</subject><issn>1687-9600</issn><issn>1687-9619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1P4zAQxSMEEhVw44wscVwC_ojj-FixlCKxWgkBV2vijFtXaZ110u32v8dsKva4c5mn0W_ejPSy7JLRW8akvOOUVXda8KLk4iibsLJSuS6ZPv7SlJ5mF32_oqmE5pqpSeanZAZr3-5JcGS-7zDWofU2f02SPPzpkvYDmYVokbzgYtvCEGJPdn5Ykqkd_G8k79iGBO3Jd1h3frMgLkTyEuowkB-w8d1h5zw7cdD2eHHoZ9nb7OH1fp4__3x8up8-51ZyNeQlrTjWzDmlJGqKDHTRgHTgaipFUQGzglFVVKrQWFVSMwBwrlBSU4esFmfZ0-jbBFiZLvo1xL0J4M3fQYgLA3HwtkWjFEfhStHU6ApXNVqIBqy1NdZSKtkkr-vRq4vh1xb7wazCNm7S-4ZTwYVStFSJuhkpG0PfR3RfVxk1n9mYz2zMIZuEfxvxpd80sPP_o69GGhODDv7RTCtNC_EBosWYUw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Reyes-Cortés, Fernando</creator><creator>González-Galván, Emilio J.</creator><creator>Chávez-Olivares, César</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><general>Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5682-0070</orcidid><orcidid>https://orcid.org/0000-0002-9576-1667</orcidid><orcidid>https://orcid.org/0000-0001-5200-7632</orcidid></search><sort><creationdate>20180101</creationdate><title>A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators</title><author>Reyes-Cortés, Fernando ; González-Galván, Emilio J. ; Chávez-Olivares, César</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active damping</topic><topic>Automation</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Decomposition</topic><topic>Energy dissipation</topic><topic>Error analysis</topic><topic>Feedback</topic><topic>Hyperbolic functions</topic><topic>Liapunov functions</topic><topic>Manipulators</topic><topic>Mathematical problems</topic><topic>Parameter identification</topic><topic>Regulation</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Robots</topic><topic>Simulation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes-Cortés, Fernando</creatorcontrib><creatorcontrib>González-Galván, Emilio J.</creatorcontrib><creatorcontrib>Chávez-Olivares, César</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes-Cortés, Fernando</au><au>González-Galván, Emilio J.</au><au>Chávez-Olivares, César</au><au>Fortuna, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators</atitle><jtitle>Journal of robotics</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-9600</issn><eissn>1687-9619</eissn><abstract>This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocity damping term with the purpose of obtaining energy dissipation on the contact surface is incorporated plus compensation for gravity. In order to ensure asymptotic stability of the closed-loop system equilibrium point in Cartesian space, we propose a strict Lyapunov function. A force sensor placed at the end-effector of the robot manipulator is used in order to feed back the measure of the force error in the closed-loop, and an experimental comparison of the performance L2-norm between 5 explicit force control schemes, which are the classical proportional-derivative (PD), arctangent, and square-root controls and two members of the proposed control family, on a two-degree-of-freedom, direct-drive robot manipulator, is presented.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/9324623</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5682-0070</orcidid><orcidid>https://orcid.org/0000-0002-9576-1667</orcidid><orcidid>https://orcid.org/0000-0001-5200-7632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9600 |
ispartof | Journal of robotics, 2018-01, Vol.2018 (2018), p.1-15 |
issn | 1687-9600 1687-9619 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_772e3f63dbef4f8d933dacccbeb5575d |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Active damping Automation Control algorithms Controllers Decomposition Energy dissipation Error analysis Feedback Hyperbolic functions Liapunov functions Manipulators Mathematical problems Parameter identification Regulation Robot arms Robotics Robots Simulation Velocity |
title | A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Family%20of%20Hyperbolic-Type%20Explicit%20Force%20Regulators%20with%20Active%20Velocity%20Damping%20for%20Robot%20Manipulators&rft.jtitle=Journal%20of%20robotics&rft.au=Reyes-Cort%C3%A9s,%20Fernando&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-9600&rft.eissn=1687-9619&rft_id=info:doi/10.1155/2018/9324623&rft_dat=%3Cproquest_doaj_%3E2032377067%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-6082eb1ff775e90e1a94da5fafb05348a1c310748749e88591aaaff47590fe1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2032377067&rft_id=info:pmid/&rfr_iscdi=true |