Loading…

Solid-State Electrochemical Energy Storage Based on Soluble Melanin

Biocompatible and biodegradable powering materials are appealing systems for biomedical and electronic devices. Melanin is a natural and multifunctional material with redox capability, which is of great interest in electrochemical energy storage functionalities. In our work, we explored the use of s...

Full description

Saved in:
Bibliographic Details
Published in:Electrochem (Basel, Switzerland) Switzerland), 2021-06, Vol.2 (2), p.264-273
Main Authors: Paulin, João V., Fernandes, Silvia L., Graeff, Carlos F. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biocompatible and biodegradable powering materials are appealing systems for biomedical and electronic devices. Melanin is a natural and multifunctional material with redox capability, which is of great interest in electrochemical energy storage functionalities. In our work, we explored the use of soluble melanin derivatives as active materials for symmetric solid-state supercapacitors operating in the dark and under illumination. We observed that our devices were photo-pseudocapacitive. Additionally, under illumination, our best device showed a specific capacitance of 57.7 mFg−1 at a scan rate of 0.01 Vs−1, with a decrease of 53% in resistance compared to that in the dark. Our outcome suggests that soluble melanin is a promising material for solid-state powering elements in wearable and environmentally friendly devices.
ISSN:2673-3293
2673-3293
DOI:10.3390/electrochem2020019