Loading…
Hollow Concrete Block Based on High-Strength Concrete as a Tool for Reducing the Carbon Footprint in Construction
The production and servicing of cement-based building materials is a source of large amounts of carbon dioxide emissions globally. One of the ways to reduce its negative impact, is to reduce concrete consumption per cubic meter of building structure through the introduction of hollow concrete produc...
Saved in:
Published in: | Journal of composites science 2024-09, Vol.8 (9), p.358 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The production and servicing of cement-based building materials is a source of large amounts of carbon dioxide emissions globally. One of the ways to reduce its negative impact, is to reduce concrete consumption per cubic meter of building structure through the introduction of hollow concrete products. At the same time, to maintain the load-bearing capacity of the building structure, it is necessary to significantly increase the strength of the concrete used. However, an increase in strength should be achieved not by increasing cement consumption, but by increasing the efficiency of its use. This research is focused on the development of technology for the production of thin-walled hollow concrete blocks based on high-strength, self-compacting, dispersed, micro-reinforced, fine-grained concrete. The use of this concrete provides 2–2.5 times higher strength in the amount of Portland cement consumed in comparison with ordinary concrete. The formation of external contours and partitions of thin-walled hollow blocks is ensured through the use of disposable formwork or cores used as void formers obtained by FDM 3D printing. This design solution makes it possible to obtain products based on high-strength concrete with higher structural and thermal insulation properties compared to now existing lightweight concrete-based blocks. Another area of application of this technology could be the production of wall structures of free configuration and cross-section due to their division, at the digital modeling stage, into individual element-blocks, manufactured in a factory environment. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs8090358 |