Loading…
Genome-wide association mapping of rust resistance in Aegilops longissima
The rust diseases, including leaf rust caused by ( ), stem rust caused by f. sp. ( ), and stripe rust caused by f. sp. ( ), are major limiting factors in wheat production worldwide. Identification of novel sources of rust resistance genes is key to developing cultivars resistant to rapidly evolving...
Saved in:
Published in: | Frontiers in plant science 2023-07, Vol.14, p.1196486-1196486 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rust diseases, including leaf rust caused by
(
), stem rust caused by
f. sp.
(
), and stripe rust caused by
f. sp.
(
), are major limiting factors in wheat production worldwide. Identification of novel sources of rust resistance genes is key to developing cultivars resistant to rapidly evolving pathogen populations.
is a diploid wild grass native to the Levant and closely related to the modern bread wheat D subgenome. To explore resistance genes in the species, we evaluated a large panel of
for resistance to several races of
,
, and
, and conducted a genome-wide association study (GWAS) to map rust resistance loci in the species. A panel of 404
accessions, mostly collected from Israel, were screened for seedling-stage resistance to four races of
, four races of
, and three races of
. Out of the 404 accessions screened, two were found that were resistant to all 11 races of the three rust pathogens screened. The percentage of all accessions screened that were resistant to a given rust pathogen race ranged from 18.5% to 99.7%. Genotyping-by-sequencing (GBS) was performed on 381 accessions of the
panel, wherein 125,343 single nucleotide polymorphisms (SNPs) were obtained after alignment to the
reference genome assembly and quality control filtering. Genetic diversity analysis revealed the presence of two distinct subpopulations, which followed a geographic pattern of a northern and a southern subpopulation. Association mapping was performed in the genotyped portion of the collection (n = 381) and in each subpopulation (n = 204 and 174) independently via a single-locus mixed-linear model, and two multi-locus models, FarmCPU, and BLINK. A large number (195) of markers were significantly associated with resistance to at least one of 10 rust pathogen races evaluated, nine of which are key candidate markers for further investigation due to their detection via multiple models and/or their association with resistance to more than one pathogen race. The novel resistance loci identified will provide additional diversity available for use in wheat breeding. |
---|---|
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2023.1196486 |