Loading…

Algorithms that transfer between different energy metering methods for simplification of energy trading and unified billing

The paper settles a discrepancy between two smart-metering methods. The issue bears on a billion installed smart meters and $36B electric-energy trading market. The contemporary problem of the energy-metering registration gap between the methods, relates to energy-trading unified-billing, and it wil...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2022-12, Vol.8 (12), p.e11542-e11542, Article e11542
Main Authors: Calamaro, Netzah, Donko, Moshe, Shmilovitz, Doron
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper settles a discrepancy between two smart-metering methods. The issue bears on a billion installed smart meters and $36B electric-energy trading market. The contemporary problem of the energy-metering registration gap between the methods, relates to energy-trading unified-billing, and it will aggravate in the future. A mathematical definition for active and reactive, import/export energy-metering formulas is given for vector/arithmetic common metering models employing energy formulas rather than power, energy being the language of smart metering design/usage/billing. Economic reasoning, difficulty of implementation, and required regulator's flexibility at establishing different import/export tariffs-per different tariff program-types are explained. Innovations in the presented work include: (1) mathematical formulation of metering-methods-definitions that is validated over: one EU organization, twelve major meter manufacturers, twenty model-types, is presented and tested. (2) formulation of drivers for 100% accurate conversion from one method to another is developed. (3) fifteen real-life experiments covering the entire problem spectrum are conducted with new results, discovering new energy/tariff “conservation-rules”, relevant to manufacturers/utility companies/regulators/customers. (4) a correct segmentation of customers to energy/tariff registration-gap is generated. (5) an algebra that is suitable to energy metering/conversion/tariff computation-and-design is presented. (6) research reduces the cost of a contemporary solution by 98%. (6) Advantages/disadvantages of each method are named. (7) scenarios where one of the energy methods may be incorrect are considered-and-rejected. Eleven theorems formulated and proved, and fifteen field test cases covering the entire electricity market. (8) regulators may maintain arithmetic meters, enjoying their added value, and manage precise arithmetic/vector metering using these meters– especially using load profile and potentially satisfying with billing registers. Smart metering; Algebraic metering method; Vector metering method; Smart grid
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2022.e11542