Loading…

Use of electronic health record data mining for heart failure subtyping

To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical a...

Full description

Saved in:
Bibliographic Details
Published in:BMC research notes 2023-09, Vol.16 (1), p.1-6, Article 208
Main Authors: Vuori, Matti A, Kiiskinen, Tuomo, Pitkänen, Niina, Kurki, Samu, Laivuori, Hannele, Laitinen, Tarja, Mäntylahti, Sampo, Palotie, Aarno, Niiranen, Teemu J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3
cites cdi_FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3
container_end_page 6
container_issue 1
container_start_page 1
container_title BMC research notes
container_volume 16
creator Vuori, Matti A
Kiiskinen, Tuomo
Pitkänen, Niina
Kurki, Samu
Laivuori, Hannele
Laitinen, Tarja
Mäntylahti, Sampo
Palotie, Aarno
Niiranen, Teemu J
description To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF). In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94-100% for HFrEF, 85-100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24-2.95) to HFpEF (2.28; 1.80-2.88) to HFrEF group (2.63; 1.97-3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF.
doi_str_mv 10.1186/s13104-023-06469-x
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_77d1b954130a4338bb5ca0678ad91020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764863192</galeid><doaj_id>oai_doaj_org_article_77d1b954130a4338bb5ca0678ad91020</doaj_id><sourcerecordid>A764863192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoqXwBzhF4gKHFH9_nFBVQVmpUi-UqzWxnaxXSbzYCdr-e5xuBSxCPow188w79uitqrcYXWKsxMeMKUasQYQ2SDChm8Oz6hxLLhrEEXr-1_2sepXzDiGBlcIvqzMqhZZUq_Pq5j77Ona1H7ydU5yCrbcehnlbJ29jcrWDGeoxTGHq6y6mtZrmuoMwLMnXeWnnh32pva5edDBk_-YpXlT3Xz5_u_7a3N7dbK6vbhvLJZ8bIZnlWgHWjFKBPSoJx4HpTisGYCVxHkkMTFDZEuVsq5DwhDLiCbiupRfV5qjrIuzMPoUR0oOJEMxjIqbelPcFO3gjpcOt5gxTBGWaaltuoQxU4DRGBBWtT0et_dKO3lk_zQmGE9HTyhS2po8_Tdm6FoSvCu-fFFL8sfg8mzFk64cBJh-XbIgSDHNRQkHf_YPu4pKmsquV4gwRQtUfqofygzB1sQy2q6i5koIVHaxJoS7_Q5Xj_BhsnHwXSv6k4cNJQ2Fmf5h7WHI2m7vvpyw5sjbFnJPvfi8EI7P6zhx9Z4rvzKPvzIH-AujYxf8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865402238</pqid></control><display><type>article</type><title>Use of electronic health record data mining for heart failure subtyping</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Vuori, Matti A ; Kiiskinen, Tuomo ; Pitkänen, Niina ; Kurki, Samu ; Laivuori, Hannele ; Laitinen, Tarja ; Mäntylahti, Sampo ; Palotie, Aarno ; Niiranen, Teemu J</creator><creatorcontrib>Vuori, Matti A ; Kiiskinen, Tuomo ; Pitkänen, Niina ; Kurki, Samu ; Laivuori, Hannele ; Laitinen, Tarja ; Mäntylahti, Sampo ; Palotie, Aarno ; Niiranen, Teemu J</creatorcontrib><description>To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF). In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94-100% for HFrEF, 85-100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24-2.95) to HFpEF (2.28; 1.80-2.88) to HFrEF group (2.63; 1.97-3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF.</description><identifier>ISSN: 1756-0500</identifier><identifier>EISSN: 1756-0500</identifier><identifier>DOI: 10.1186/s13104-023-06469-x</identifier><identifier>PMID: 37697398</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Biobanks ; Cardiovascular disease ; Care and treatment ; Congestive heart failure ; Creatinine ; Data mining ; Diabetes ; Diagnosis ; Ejection fraction ; Electronic health records ; Electronic medical records ; Electronic records ; Finland ; Health ; Heart failure ; HFrEF ; Hospitals ; Hypertension ; Laboratories ; Medical records ; Medical research ; Medicine, Experimental ; Methods ; Mortality ; Research Note ; Risk factors ; Text mining ; Type 2 diabetes</subject><ispartof>BMC research notes, 2023-09, Vol.16 (1), p.1-6, Article 208</ispartof><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023. BioMed Central Ltd., part of Springer Nature.</rights><rights>BioMed Central Ltd., part of Springer Nature 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3</citedby><cites>FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496250/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865402238?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Vuori, Matti A</creatorcontrib><creatorcontrib>Kiiskinen, Tuomo</creatorcontrib><creatorcontrib>Pitkänen, Niina</creatorcontrib><creatorcontrib>Kurki, Samu</creatorcontrib><creatorcontrib>Laivuori, Hannele</creatorcontrib><creatorcontrib>Laitinen, Tarja</creatorcontrib><creatorcontrib>Mäntylahti, Sampo</creatorcontrib><creatorcontrib>Palotie, Aarno</creatorcontrib><creatorcontrib>Niiranen, Teemu J</creatorcontrib><title>Use of electronic health record data mining for heart failure subtyping</title><title>BMC research notes</title><description>To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF). In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94-100% for HFrEF, 85-100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24-2.95) to HFpEF (2.28; 1.80-2.88) to HFrEF group (2.63; 1.97-3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biobanks</subject><subject>Cardiovascular disease</subject><subject>Care and treatment</subject><subject>Congestive heart failure</subject><subject>Creatinine</subject><subject>Data mining</subject><subject>Diabetes</subject><subject>Diagnosis</subject><subject>Ejection fraction</subject><subject>Electronic health records</subject><subject>Electronic medical records</subject><subject>Electronic records</subject><subject>Finland</subject><subject>Health</subject><subject>Heart failure</subject><subject>HFrEF</subject><subject>Hospitals</subject><subject>Hypertension</subject><subject>Laboratories</subject><subject>Medical records</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Mortality</subject><subject>Research Note</subject><subject>Risk factors</subject><subject>Text mining</subject><subject>Type 2 diabetes</subject><issn>1756-0500</issn><issn>1756-0500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEoqXwBzhF4gKHFH9_nFBVQVmpUi-UqzWxnaxXSbzYCdr-e5xuBSxCPow188w79uitqrcYXWKsxMeMKUasQYQ2SDChm8Oz6hxLLhrEEXr-1_2sepXzDiGBlcIvqzMqhZZUq_Pq5j77Ona1H7ydU5yCrbcehnlbJ29jcrWDGeoxTGHq6y6mtZrmuoMwLMnXeWnnh32pva5edDBk_-YpXlT3Xz5_u_7a3N7dbK6vbhvLJZ8bIZnlWgHWjFKBPSoJx4HpTisGYCVxHkkMTFDZEuVsq5DwhDLiCbiupRfV5qjrIuzMPoUR0oOJEMxjIqbelPcFO3gjpcOt5gxTBGWaaltuoQxU4DRGBBWtT0et_dKO3lk_zQmGE9HTyhS2po8_Tdm6FoSvCu-fFFL8sfg8mzFk64cBJh-XbIgSDHNRQkHf_YPu4pKmsquV4gwRQtUfqofygzB1sQy2q6i5koIVHaxJoS7_Q5Xj_BhsnHwXSv6k4cNJQ2Fmf5h7WHI2m7vvpyw5sjbFnJPvfi8EI7P6zhx9Z4rvzKPvzIH-AujYxf8</recordid><startdate>20230911</startdate><enddate>20230911</enddate><creator>Vuori, Matti A</creator><creator>Kiiskinen, Tuomo</creator><creator>Pitkänen, Niina</creator><creator>Kurki, Samu</creator><creator>Laivuori, Hannele</creator><creator>Laitinen, Tarja</creator><creator>Mäntylahti, Sampo</creator><creator>Palotie, Aarno</creator><creator>Niiranen, Teemu J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230911</creationdate><title>Use of electronic health record data mining for heart failure subtyping</title><author>Vuori, Matti A ; Kiiskinen, Tuomo ; Pitkänen, Niina ; Kurki, Samu ; Laivuori, Hannele ; Laitinen, Tarja ; Mäntylahti, Sampo ; Palotie, Aarno ; Niiranen, Teemu J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biobanks</topic><topic>Cardiovascular disease</topic><topic>Care and treatment</topic><topic>Congestive heart failure</topic><topic>Creatinine</topic><topic>Data mining</topic><topic>Diabetes</topic><topic>Diagnosis</topic><topic>Ejection fraction</topic><topic>Electronic health records</topic><topic>Electronic medical records</topic><topic>Electronic records</topic><topic>Finland</topic><topic>Health</topic><topic>Heart failure</topic><topic>HFrEF</topic><topic>Hospitals</topic><topic>Hypertension</topic><topic>Laboratories</topic><topic>Medical records</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Mortality</topic><topic>Research Note</topic><topic>Risk factors</topic><topic>Text mining</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vuori, Matti A</creatorcontrib><creatorcontrib>Kiiskinen, Tuomo</creatorcontrib><creatorcontrib>Pitkänen, Niina</creatorcontrib><creatorcontrib>Kurki, Samu</creatorcontrib><creatorcontrib>Laivuori, Hannele</creatorcontrib><creatorcontrib>Laitinen, Tarja</creatorcontrib><creatorcontrib>Mäntylahti, Sampo</creatorcontrib><creatorcontrib>Palotie, Aarno</creatorcontrib><creatorcontrib>Niiranen, Teemu J</creatorcontrib><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC research notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vuori, Matti A</au><au>Kiiskinen, Tuomo</au><au>Pitkänen, Niina</au><au>Kurki, Samu</au><au>Laivuori, Hannele</au><au>Laitinen, Tarja</au><au>Mäntylahti, Sampo</au><au>Palotie, Aarno</au><au>Niiranen, Teemu J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of electronic health record data mining for heart failure subtyping</atitle><jtitle>BMC research notes</jtitle><date>2023-09-11</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>208</artnum><issn>1756-0500</issn><eissn>1756-0500</eissn><abstract>To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF). In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94-100% for HFrEF, 85-100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24-2.95) to HFpEF (2.28; 1.80-2.88) to HFrEF group (2.63; 1.97-3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF.</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>37697398</pmid><doi>10.1186/s13104-023-06469-x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-0500
ispartof BMC research notes, 2023-09, Vol.16 (1), p.1-6, Article 208
issn 1756-0500
1756-0500
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_77d1b954130a4338bb5ca0678ad91020
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Algorithms
Analysis
Biobanks
Cardiovascular disease
Care and treatment
Congestive heart failure
Creatinine
Data mining
Diabetes
Diagnosis
Ejection fraction
Electronic health records
Electronic medical records
Electronic records
Finland
Health
Heart failure
HFrEF
Hospitals
Hypertension
Laboratories
Medical records
Medical research
Medicine, Experimental
Methods
Mortality
Research Note
Risk factors
Text mining
Type 2 diabetes
title Use of electronic health record data mining for heart failure subtyping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20electronic%20health%20record%20data%20mining%20for%20heart%20failure%20subtyping&rft.jtitle=BMC%20research%20notes&rft.au=Vuori,%20Matti%20A&rft.date=2023-09-11&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=208&rft.issn=1756-0500&rft.eissn=1756-0500&rft_id=info:doi/10.1186/s13104-023-06469-x&rft_dat=%3Cgale_doaj_%3EA764863192%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865402238&rft_id=info:pmid/37697398&rft_galeid=A764863192&rfr_iscdi=true