Loading…
Use of electronic health record data mining for heart failure subtyping
To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical a...
Saved in:
Published in: | BMC research notes 2023-09, Vol.16 (1), p.1-6, Article 208 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3 |
container_end_page | 6 |
container_issue | 1 |
container_start_page | 1 |
container_title | BMC research notes |
container_volume | 16 |
creator | Vuori, Matti A Kiiskinen, Tuomo Pitkänen, Niina Kurki, Samu Laivuori, Hannele Laitinen, Tarja Mäntylahti, Sampo Palotie, Aarno Niiranen, Teemu J |
description | To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF). In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94-100% for HFrEF, 85-100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24-2.95) to HFpEF (2.28; 1.80-2.88) to HFrEF group (2.63; 1.97-3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF. |
doi_str_mv | 10.1186/s13104-023-06469-x |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_77d1b954130a4338bb5ca0678ad91020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764863192</galeid><doaj_id>oai_doaj_org_article_77d1b954130a4338bb5ca0678ad91020</doaj_id><sourcerecordid>A764863192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoqXwBzhF4gKHFH9_nFBVQVmpUi-UqzWxnaxXSbzYCdr-e5xuBSxCPow188w79uitqrcYXWKsxMeMKUasQYQ2SDChm8Oz6hxLLhrEEXr-1_2sepXzDiGBlcIvqzMqhZZUq_Pq5j77Ona1H7ydU5yCrbcehnlbJ29jcrWDGeoxTGHq6y6mtZrmuoMwLMnXeWnnh32pva5edDBk_-YpXlT3Xz5_u_7a3N7dbK6vbhvLJZ8bIZnlWgHWjFKBPSoJx4HpTisGYCVxHkkMTFDZEuVsq5DwhDLiCbiupRfV5qjrIuzMPoUR0oOJEMxjIqbelPcFO3gjpcOt5gxTBGWaaltuoQxU4DRGBBWtT0et_dKO3lk_zQmGE9HTyhS2po8_Tdm6FoSvCu-fFFL8sfg8mzFk64cBJh-XbIgSDHNRQkHf_YPu4pKmsquV4gwRQtUfqofygzB1sQy2q6i5koIVHaxJoS7_Q5Xj_BhsnHwXSv6k4cNJQ2Fmf5h7WHI2m7vvpyw5sjbFnJPvfi8EI7P6zhx9Z4rvzKPvzIH-AujYxf8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865402238</pqid></control><display><type>article</type><title>Use of electronic health record data mining for heart failure subtyping</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Vuori, Matti A ; Kiiskinen, Tuomo ; Pitkänen, Niina ; Kurki, Samu ; Laivuori, Hannele ; Laitinen, Tarja ; Mäntylahti, Sampo ; Palotie, Aarno ; Niiranen, Teemu J</creator><creatorcontrib>Vuori, Matti A ; Kiiskinen, Tuomo ; Pitkänen, Niina ; Kurki, Samu ; Laivuori, Hannele ; Laitinen, Tarja ; Mäntylahti, Sampo ; Palotie, Aarno ; Niiranen, Teemu J</creatorcontrib><description>To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF). In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94-100% for HFrEF, 85-100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24-2.95) to HFpEF (2.28; 1.80-2.88) to HFrEF group (2.63; 1.97-3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF.</description><identifier>ISSN: 1756-0500</identifier><identifier>EISSN: 1756-0500</identifier><identifier>DOI: 10.1186/s13104-023-06469-x</identifier><identifier>PMID: 37697398</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Biobanks ; Cardiovascular disease ; Care and treatment ; Congestive heart failure ; Creatinine ; Data mining ; Diabetes ; Diagnosis ; Ejection fraction ; Electronic health records ; Electronic medical records ; Electronic records ; Finland ; Health ; Heart failure ; HFrEF ; Hospitals ; Hypertension ; Laboratories ; Medical records ; Medical research ; Medicine, Experimental ; Methods ; Mortality ; Research Note ; Risk factors ; Text mining ; Type 2 diabetes</subject><ispartof>BMC research notes, 2023-09, Vol.16 (1), p.1-6, Article 208</ispartof><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023. BioMed Central Ltd., part of Springer Nature.</rights><rights>BioMed Central Ltd., part of Springer Nature 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3</citedby><cites>FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496250/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865402238?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Vuori, Matti A</creatorcontrib><creatorcontrib>Kiiskinen, Tuomo</creatorcontrib><creatorcontrib>Pitkänen, Niina</creatorcontrib><creatorcontrib>Kurki, Samu</creatorcontrib><creatorcontrib>Laivuori, Hannele</creatorcontrib><creatorcontrib>Laitinen, Tarja</creatorcontrib><creatorcontrib>Mäntylahti, Sampo</creatorcontrib><creatorcontrib>Palotie, Aarno</creatorcontrib><creatorcontrib>Niiranen, Teemu J</creatorcontrib><title>Use of electronic health record data mining for heart failure subtyping</title><title>BMC research notes</title><description>To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF). In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94-100% for HFrEF, 85-100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24-2.95) to HFpEF (2.28; 1.80-2.88) to HFrEF group (2.63; 1.97-3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biobanks</subject><subject>Cardiovascular disease</subject><subject>Care and treatment</subject><subject>Congestive heart failure</subject><subject>Creatinine</subject><subject>Data mining</subject><subject>Diabetes</subject><subject>Diagnosis</subject><subject>Ejection fraction</subject><subject>Electronic health records</subject><subject>Electronic medical records</subject><subject>Electronic records</subject><subject>Finland</subject><subject>Health</subject><subject>Heart failure</subject><subject>HFrEF</subject><subject>Hospitals</subject><subject>Hypertension</subject><subject>Laboratories</subject><subject>Medical records</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Mortality</subject><subject>Research Note</subject><subject>Risk factors</subject><subject>Text mining</subject><subject>Type 2 diabetes</subject><issn>1756-0500</issn><issn>1756-0500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEoqXwBzhF4gKHFH9_nFBVQVmpUi-UqzWxnaxXSbzYCdr-e5xuBSxCPow188w79uitqrcYXWKsxMeMKUasQYQ2SDChm8Oz6hxLLhrEEXr-1_2sepXzDiGBlcIvqzMqhZZUq_Pq5j77Ona1H7ydU5yCrbcehnlbJ29jcrWDGeoxTGHq6y6mtZrmuoMwLMnXeWnnh32pva5edDBk_-YpXlT3Xz5_u_7a3N7dbK6vbhvLJZ8bIZnlWgHWjFKBPSoJx4HpTisGYCVxHkkMTFDZEuVsq5DwhDLiCbiupRfV5qjrIuzMPoUR0oOJEMxjIqbelPcFO3gjpcOt5gxTBGWaaltuoQxU4DRGBBWtT0et_dKO3lk_zQmGE9HTyhS2po8_Tdm6FoSvCu-fFFL8sfg8mzFk64cBJh-XbIgSDHNRQkHf_YPu4pKmsquV4gwRQtUfqofygzB1sQy2q6i5koIVHaxJoS7_Q5Xj_BhsnHwXSv6k4cNJQ2Fmf5h7WHI2m7vvpyw5sjbFnJPvfi8EI7P6zhx9Z4rvzKPvzIH-AujYxf8</recordid><startdate>20230911</startdate><enddate>20230911</enddate><creator>Vuori, Matti A</creator><creator>Kiiskinen, Tuomo</creator><creator>Pitkänen, Niina</creator><creator>Kurki, Samu</creator><creator>Laivuori, Hannele</creator><creator>Laitinen, Tarja</creator><creator>Mäntylahti, Sampo</creator><creator>Palotie, Aarno</creator><creator>Niiranen, Teemu J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230911</creationdate><title>Use of electronic health record data mining for heart failure subtyping</title><author>Vuori, Matti A ; Kiiskinen, Tuomo ; Pitkänen, Niina ; Kurki, Samu ; Laivuori, Hannele ; Laitinen, Tarja ; Mäntylahti, Sampo ; Palotie, Aarno ; Niiranen, Teemu J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biobanks</topic><topic>Cardiovascular disease</topic><topic>Care and treatment</topic><topic>Congestive heart failure</topic><topic>Creatinine</topic><topic>Data mining</topic><topic>Diabetes</topic><topic>Diagnosis</topic><topic>Ejection fraction</topic><topic>Electronic health records</topic><topic>Electronic medical records</topic><topic>Electronic records</topic><topic>Finland</topic><topic>Health</topic><topic>Heart failure</topic><topic>HFrEF</topic><topic>Hospitals</topic><topic>Hypertension</topic><topic>Laboratories</topic><topic>Medical records</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Mortality</topic><topic>Research Note</topic><topic>Risk factors</topic><topic>Text mining</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vuori, Matti A</creatorcontrib><creatorcontrib>Kiiskinen, Tuomo</creatorcontrib><creatorcontrib>Pitkänen, Niina</creatorcontrib><creatorcontrib>Kurki, Samu</creatorcontrib><creatorcontrib>Laivuori, Hannele</creatorcontrib><creatorcontrib>Laitinen, Tarja</creatorcontrib><creatorcontrib>Mäntylahti, Sampo</creatorcontrib><creatorcontrib>Palotie, Aarno</creatorcontrib><creatorcontrib>Niiranen, Teemu J</creatorcontrib><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC research notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vuori, Matti A</au><au>Kiiskinen, Tuomo</au><au>Pitkänen, Niina</au><au>Kurki, Samu</au><au>Laivuori, Hannele</au><au>Laitinen, Tarja</au><au>Mäntylahti, Sampo</au><au>Palotie, Aarno</au><au>Niiranen, Teemu J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of electronic health record data mining for heart failure subtyping</atitle><jtitle>BMC research notes</jtitle><date>2023-09-11</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>208</artnum><issn>1756-0500</issn><eissn>1756-0500</eissn><abstract>To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF). In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94-100% for HFrEF, 85-100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24-2.95) to HFpEF (2.28; 1.80-2.88) to HFrEF group (2.63; 1.97-3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF.</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>37697398</pmid><doi>10.1186/s13104-023-06469-x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-0500 |
ispartof | BMC research notes, 2023-09, Vol.16 (1), p.1-6, Article 208 |
issn | 1756-0500 1756-0500 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_77d1b954130a4338bb5ca0678ad91020 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | Algorithms Analysis Biobanks Cardiovascular disease Care and treatment Congestive heart failure Creatinine Data mining Diabetes Diagnosis Ejection fraction Electronic health records Electronic medical records Electronic records Finland Health Heart failure HFrEF Hospitals Hypertension Laboratories Medical records Medical research Medicine, Experimental Methods Mortality Research Note Risk factors Text mining Type 2 diabetes |
title | Use of electronic health record data mining for heart failure subtyping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20electronic%20health%20record%20data%20mining%20for%20heart%20failure%20subtyping&rft.jtitle=BMC%20research%20notes&rft.au=Vuori,%20Matti%20A&rft.date=2023-09-11&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=208&rft.issn=1756-0500&rft.eissn=1756-0500&rft_id=info:doi/10.1186/s13104-023-06469-x&rft_dat=%3Cgale_doaj_%3EA764863192%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-674c598a1943361e0674d5a49f984aac72de071a4637b28dcb806e2342e2adfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865402238&rft_id=info:pmid/37697398&rft_galeid=A764863192&rfr_iscdi=true |