Loading…

Cascaded H-Bridge Multilevel Converter Applied to a Wind Energy Conversion System with Open-End Winding

With the growing expansion of renewable sources around the world, wind energy is among those that stand out. With the advances of technology, wind turbine projects have considerably increased their power, reaching higher power, mainly for offshore installations. One of the main challenges is the pow...

Full description

Saved in:
Bibliographic Details
Published in:Wind 2023-06, Vol.3 (2), p.232-252
Main Authors: Bettoni, Samuel dos Santos, Ramos, Herbert de Oliveira, Matos, Frederico F., Mendes, Victor Flores
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the growing expansion of renewable sources around the world, wind energy is among those that stand out. With the advances of technology, wind turbine projects have considerably increased their power, reaching higher power, mainly for offshore installations. One of the main challenges is the power converters, more specifically the semiconductor components, which have limited voltage and current capabilities. Thus, the concept of multilevel converters emerged, increasing the voltage levels and thus carrying higher power levels. In addition to the application of multilevel converters, it is possible to increase the voltage and power levels employing an open-end winding (OEW) connection to the generator. In this context, the present work investigated the application of a multilevel converter (three-level cascaded H-bridge back-to-back) driving a squirrel-cage induction machine in an open-end winding configuration, connected to a wind energy conversion system (WECS). The analysis of the proposed system was developed through dynamic simulation of a 1.67 MW WECS, using PLECS software, including the modeling of the main system components: generator, power converters, system control, filter, and grid connection. The results show that the objective of obtaining a 5-level behavior in the output voltage is achieved by using the OEW connection. Furthermore, a low harmonic content is achieved in the machine current as in the current injected into the grid. In addition, it is possible to verify the power distribution between the converters, demonstrating that converters with smaller power can be combined to reach higher WECS power.
ISSN:2674-032X
2674-032X
DOI:10.3390/wind3020014