Loading…

Decorated CuO nanoparticles over chitosan-functionalized magnetic nanoparticles: Investigation of its anti-colon carcinoma and anti-gastric cancer effects

In this study, a green protocol for supporting CuO nanoparticles over chitosan-modified amino-magnetic nanoparticles is described. The physicochemical and morphological properties of the desired nanocomposite assessed by various techniques like ICP, FT-IR, FE-SEM, EDX, TEM, XRD and VSM. In the oncol...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal of chemistry 2021-07, Vol.14 (7), p.103201, Article 103201
Main Authors: Wang, Yuping, El-Kott, Attalla F., El-Kenawy, Ayman E., Xue, Liangjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a green protocol for supporting CuO nanoparticles over chitosan-modified amino-magnetic nanoparticles is described. The physicochemical and morphological properties of the desired nanocomposite assessed by various techniques like ICP, FT-IR, FE-SEM, EDX, TEM, XRD and VSM. In the oncological part of the recent study, the Cu(NO3)2, Fe3O4, and Fe3O4-NH2@CS/CuO nanocomposite cell viability was very low against human gastric cancer cell lines i.e. MKN45, AGS, and KATO III and human colorectal carcinoma cell lines i.e. HT-29, HCT 116, HCT-8 [HRT-18], and Ramos.2G6.4C10. The IC50 of Fe3O4-NH2@CS/CuO nanocomposite against MKN45, AGS, KATO III, HT-29, HCT 116, HCT-8 [HRT-18], and Ramos.2G6.4C10 cell lines were 517, 525, 544, 282, 214, 420, and 477 µg/mL, respectively. Thereby, the best anti-gastro-duodenal cancers findings of our Fe3O4-NH2@CS/CuO nanocomposite was seen in the HCT 116 cell line case.
ISSN:1878-5352
1878-5379
DOI:10.1016/j.arabjc.2021.103201