Loading…

In-Situ Annealing and Hydrogen Irradiation of Defect-Enhanced Germanium Quantum Dot Light Sources on Silicon

While light-emitting nanostructures composed of group-IV materials fulfil the mandatory compatibility with CMOS-fabrication methods, factors such as the structural stability of the nanostructures upon thermal annealing, and the ensuing photoluminescence (PL) emission properties, are of key relevance...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2020-05, Vol.10 (5), p.351
Main Authors: Spindlberger, Lukas, Aberl, Johannes, Polimeni, Antonio, Schuster, Jeffrey, Hörschläger, Julian, Truglas, Tia, Groiss, Heiko, Schäffler, Friedrich, Fromherz, Thomas, Brehm, Moritz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-aa7d7e55b73b596447fa3772f3f2463c8cce8a67c2c6f50f4b84e9212806cd053
cites cdi_FETCH-LOGICAL-c342t-aa7d7e55b73b596447fa3772f3f2463c8cce8a67c2c6f50f4b84e9212806cd053
container_end_page
container_issue 5
container_start_page 351
container_title Crystals (Basel)
container_volume 10
creator Spindlberger, Lukas
Aberl, Johannes
Polimeni, Antonio
Schuster, Jeffrey
Hörschläger, Julian
Truglas, Tia
Groiss, Heiko
Schäffler, Friedrich
Fromherz, Thomas
Brehm, Moritz
description While light-emitting nanostructures composed of group-IV materials fulfil the mandatory compatibility with CMOS-fabrication methods, factors such as the structural stability of the nanostructures upon thermal annealing, and the ensuing photoluminescence (PL) emission properties, are of key relevance. In addition, the possibility of improving the PL efficiency by suitable post-growth treatments, such as hydrogen irradiation, is important too. We address these issues for self-assembled Ge quantum dots (QDs) that are co-implanted with Ge ions during their epitaxial growth. The presence of defects introduced by the impinging Ge ions results in pronounced PL-emission at telecom wavelengths up to room temperature (RT) and above. This approach allows us to overcome the severe limitations of light generation in the indirect-band-gap group-IV materials. By performing in-situ annealing, we demonstrate a high PL-stability of the defect-enhanced QD (DEQD) system against thermal treatment up to 600 °C for at least 2 h, even though the Ge QDs are structurally affected by Si/Ge intermixing via bulk diffusion. The latter, in turn, allows for emission tuning of the DEQDs over the entire telecom wavelength range from 1.3 µm to 1.55 µm. Two quenching mechanisms for light-emission are discussed; first, luminescence quenching at high PL recording temperatures, associated with the thermal escape of holes to the surrounding wetting layer; and second, annealing-induced PL-quenching at annealing temperatures >650 °C, which is associated with a migration of the defect complex out of the QD. We show that low-energy ex-situ proton irradiation into the Si matrix further improves the light emission properties of the DEQDs, whereas proton irradiation-related optically active G-centers do not affect the room temperature luminescence properties of DEQDs.
doi_str_mv 10.3390/cryst10050351
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7802e6940b5948c48bc203e3fb67dae7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7802e6940b5948c48bc203e3fb67dae7</doaj_id><sourcerecordid>oai_doaj_org_article_7802e6940b5948c48bc203e3fb67dae7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-aa7d7e55b73b596447fa3772f3f2463c8cce8a67c2c6f50f4b84e9212806cd053</originalsourceid><addsrcrecordid>eNpVkF9LwzAUxYMoOHSPvucLVNMkTdrHsc2tMBCZPpfb_OkyukTS9GHf3upE9Lycw4H7u3AQesjJI2MVeVLxPKSckIKwIr9CM0okyzgr6PWffIvmw3Akk6QgUuYz1Nc-27s04oX3BnrnOwxe4-1Zx9AZj-sYQTtILngcLF4Za1TK1v4AXhmNNyaewLvxhF9H8GnyVUh457pDwvswRmUGPF3uXe9U8PfoxkI_mPmP36H35_XbcpvtXjb1crHLFOM0ZQBSS1MUrWRtUQnOpQUmJbXMUi6YKpUyJQipqBK2IJa3JTcVzWlJhNKkYHeovnB1gGPzEd0J4rkJ4JrvIsSugZic6k0jS0KNqDiZPvFS8bJVlDDDbCukBiMnVnZhqRiGIRr7y8tJ87V882959gnBMXcq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-Situ Annealing and Hydrogen Irradiation of Defect-Enhanced Germanium Quantum Dot Light Sources on Silicon</title><source>Publicly Available Content (ProQuest)</source><creator>Spindlberger, Lukas ; Aberl, Johannes ; Polimeni, Antonio ; Schuster, Jeffrey ; Hörschläger, Julian ; Truglas, Tia ; Groiss, Heiko ; Schäffler, Friedrich ; Fromherz, Thomas ; Brehm, Moritz</creator><creatorcontrib>Spindlberger, Lukas ; Aberl, Johannes ; Polimeni, Antonio ; Schuster, Jeffrey ; Hörschläger, Julian ; Truglas, Tia ; Groiss, Heiko ; Schäffler, Friedrich ; Fromherz, Thomas ; Brehm, Moritz</creatorcontrib><description>While light-emitting nanostructures composed of group-IV materials fulfil the mandatory compatibility with CMOS-fabrication methods, factors such as the structural stability of the nanostructures upon thermal annealing, and the ensuing photoluminescence (PL) emission properties, are of key relevance. In addition, the possibility of improving the PL efficiency by suitable post-growth treatments, such as hydrogen irradiation, is important too. We address these issues for self-assembled Ge quantum dots (QDs) that are co-implanted with Ge ions during their epitaxial growth. The presence of defects introduced by the impinging Ge ions results in pronounced PL-emission at telecom wavelengths up to room temperature (RT) and above. This approach allows us to overcome the severe limitations of light generation in the indirect-band-gap group-IV materials. By performing in-situ annealing, we demonstrate a high PL-stability of the defect-enhanced QD (DEQD) system against thermal treatment up to 600 °C for at least 2 h, even though the Ge QDs are structurally affected by Si/Ge intermixing via bulk diffusion. The latter, in turn, allows for emission tuning of the DEQDs over the entire telecom wavelength range from 1.3 µm to 1.55 µm. Two quenching mechanisms for light-emission are discussed; first, luminescence quenching at high PL recording temperatures, associated with the thermal escape of holes to the surrounding wetting layer; and second, annealing-induced PL-quenching at annealing temperatures &gt;650 °C, which is associated with a migration of the defect complex out of the QD. We show that low-energy ex-situ proton irradiation into the Si matrix further improves the light emission properties of the DEQDs, whereas proton irradiation-related optically active G-centers do not affect the room temperature luminescence properties of DEQDs.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst10050351</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>defect engineering ; germanium ; hydrogen ; molecular beam epitaxy ; quantum dots ; silicon</subject><ispartof>Crystals (Basel), 2020-05, Vol.10 (5), p.351</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-aa7d7e55b73b596447fa3772f3f2463c8cce8a67c2c6f50f4b84e9212806cd053</citedby><cites>FETCH-LOGICAL-c342t-aa7d7e55b73b596447fa3772f3f2463c8cce8a67c2c6f50f4b84e9212806cd053</cites><orcidid>0000-0002-2238-4805 ; 0000-0003-2718-4041 ; 0000-0001-6369-0174 ; 0000-0001-5284-4393 ; 0000-0002-5629-5923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Spindlberger, Lukas</creatorcontrib><creatorcontrib>Aberl, Johannes</creatorcontrib><creatorcontrib>Polimeni, Antonio</creatorcontrib><creatorcontrib>Schuster, Jeffrey</creatorcontrib><creatorcontrib>Hörschläger, Julian</creatorcontrib><creatorcontrib>Truglas, Tia</creatorcontrib><creatorcontrib>Groiss, Heiko</creatorcontrib><creatorcontrib>Schäffler, Friedrich</creatorcontrib><creatorcontrib>Fromherz, Thomas</creatorcontrib><creatorcontrib>Brehm, Moritz</creatorcontrib><title>In-Situ Annealing and Hydrogen Irradiation of Defect-Enhanced Germanium Quantum Dot Light Sources on Silicon</title><title>Crystals (Basel)</title><description>While light-emitting nanostructures composed of group-IV materials fulfil the mandatory compatibility with CMOS-fabrication methods, factors such as the structural stability of the nanostructures upon thermal annealing, and the ensuing photoluminescence (PL) emission properties, are of key relevance. In addition, the possibility of improving the PL efficiency by suitable post-growth treatments, such as hydrogen irradiation, is important too. We address these issues for self-assembled Ge quantum dots (QDs) that are co-implanted with Ge ions during their epitaxial growth. The presence of defects introduced by the impinging Ge ions results in pronounced PL-emission at telecom wavelengths up to room temperature (RT) and above. This approach allows us to overcome the severe limitations of light generation in the indirect-band-gap group-IV materials. By performing in-situ annealing, we demonstrate a high PL-stability of the defect-enhanced QD (DEQD) system against thermal treatment up to 600 °C for at least 2 h, even though the Ge QDs are structurally affected by Si/Ge intermixing via bulk diffusion. The latter, in turn, allows for emission tuning of the DEQDs over the entire telecom wavelength range from 1.3 µm to 1.55 µm. Two quenching mechanisms for light-emission are discussed; first, luminescence quenching at high PL recording temperatures, associated with the thermal escape of holes to the surrounding wetting layer; and second, annealing-induced PL-quenching at annealing temperatures &gt;650 °C, which is associated with a migration of the defect complex out of the QD. We show that low-energy ex-situ proton irradiation into the Si matrix further improves the light emission properties of the DEQDs, whereas proton irradiation-related optically active G-centers do not affect the room temperature luminescence properties of DEQDs.</description><subject>defect engineering</subject><subject>germanium</subject><subject>hydrogen</subject><subject>molecular beam epitaxy</subject><subject>quantum dots</subject><subject>silicon</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkF9LwzAUxYMoOHSPvucLVNMkTdrHsc2tMBCZPpfb_OkyukTS9GHf3upE9Lycw4H7u3AQesjJI2MVeVLxPKSckIKwIr9CM0okyzgr6PWffIvmw3Akk6QgUuYz1Nc-27s04oX3BnrnOwxe4-1Zx9AZj-sYQTtILngcLF4Za1TK1v4AXhmNNyaewLvxhF9H8GnyVUh457pDwvswRmUGPF3uXe9U8PfoxkI_mPmP36H35_XbcpvtXjb1crHLFOM0ZQBSS1MUrWRtUQnOpQUmJbXMUi6YKpUyJQipqBK2IJa3JTcVzWlJhNKkYHeovnB1gGPzEd0J4rkJ4JrvIsSugZic6k0jS0KNqDiZPvFS8bJVlDDDbCukBiMnVnZhqRiGIRr7y8tJ87V882959gnBMXcq</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Spindlberger, Lukas</creator><creator>Aberl, Johannes</creator><creator>Polimeni, Antonio</creator><creator>Schuster, Jeffrey</creator><creator>Hörschläger, Julian</creator><creator>Truglas, Tia</creator><creator>Groiss, Heiko</creator><creator>Schäffler, Friedrich</creator><creator>Fromherz, Thomas</creator><creator>Brehm, Moritz</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2238-4805</orcidid><orcidid>https://orcid.org/0000-0003-2718-4041</orcidid><orcidid>https://orcid.org/0000-0001-6369-0174</orcidid><orcidid>https://orcid.org/0000-0001-5284-4393</orcidid><orcidid>https://orcid.org/0000-0002-5629-5923</orcidid></search><sort><creationdate>20200501</creationdate><title>In-Situ Annealing and Hydrogen Irradiation of Defect-Enhanced Germanium Quantum Dot Light Sources on Silicon</title><author>Spindlberger, Lukas ; Aberl, Johannes ; Polimeni, Antonio ; Schuster, Jeffrey ; Hörschläger, Julian ; Truglas, Tia ; Groiss, Heiko ; Schäffler, Friedrich ; Fromherz, Thomas ; Brehm, Moritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-aa7d7e55b73b596447fa3772f3f2463c8cce8a67c2c6f50f4b84e9212806cd053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>defect engineering</topic><topic>germanium</topic><topic>hydrogen</topic><topic>molecular beam epitaxy</topic><topic>quantum dots</topic><topic>silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spindlberger, Lukas</creatorcontrib><creatorcontrib>Aberl, Johannes</creatorcontrib><creatorcontrib>Polimeni, Antonio</creatorcontrib><creatorcontrib>Schuster, Jeffrey</creatorcontrib><creatorcontrib>Hörschläger, Julian</creatorcontrib><creatorcontrib>Truglas, Tia</creatorcontrib><creatorcontrib>Groiss, Heiko</creatorcontrib><creatorcontrib>Schäffler, Friedrich</creatorcontrib><creatorcontrib>Fromherz, Thomas</creatorcontrib><creatorcontrib>Brehm, Moritz</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spindlberger, Lukas</au><au>Aberl, Johannes</au><au>Polimeni, Antonio</au><au>Schuster, Jeffrey</au><au>Hörschläger, Julian</au><au>Truglas, Tia</au><au>Groiss, Heiko</au><au>Schäffler, Friedrich</au><au>Fromherz, Thomas</au><au>Brehm, Moritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Situ Annealing and Hydrogen Irradiation of Defect-Enhanced Germanium Quantum Dot Light Sources on Silicon</atitle><jtitle>Crystals (Basel)</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>351</spage><pages>351-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>While light-emitting nanostructures composed of group-IV materials fulfil the mandatory compatibility with CMOS-fabrication methods, factors such as the structural stability of the nanostructures upon thermal annealing, and the ensuing photoluminescence (PL) emission properties, are of key relevance. In addition, the possibility of improving the PL efficiency by suitable post-growth treatments, such as hydrogen irradiation, is important too. We address these issues for self-assembled Ge quantum dots (QDs) that are co-implanted with Ge ions during their epitaxial growth. The presence of defects introduced by the impinging Ge ions results in pronounced PL-emission at telecom wavelengths up to room temperature (RT) and above. This approach allows us to overcome the severe limitations of light generation in the indirect-band-gap group-IV materials. By performing in-situ annealing, we demonstrate a high PL-stability of the defect-enhanced QD (DEQD) system against thermal treatment up to 600 °C for at least 2 h, even though the Ge QDs are structurally affected by Si/Ge intermixing via bulk diffusion. The latter, in turn, allows for emission tuning of the DEQDs over the entire telecom wavelength range from 1.3 µm to 1.55 µm. Two quenching mechanisms for light-emission are discussed; first, luminescence quenching at high PL recording temperatures, associated with the thermal escape of holes to the surrounding wetting layer; and second, annealing-induced PL-quenching at annealing temperatures &gt;650 °C, which is associated with a migration of the defect complex out of the QD. We show that low-energy ex-situ proton irradiation into the Si matrix further improves the light emission properties of the DEQDs, whereas proton irradiation-related optically active G-centers do not affect the room temperature luminescence properties of DEQDs.</abstract><pub>MDPI AG</pub><doi>10.3390/cryst10050351</doi><orcidid>https://orcid.org/0000-0002-2238-4805</orcidid><orcidid>https://orcid.org/0000-0003-2718-4041</orcidid><orcidid>https://orcid.org/0000-0001-6369-0174</orcidid><orcidid>https://orcid.org/0000-0001-5284-4393</orcidid><orcidid>https://orcid.org/0000-0002-5629-5923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2020-05, Vol.10 (5), p.351
issn 2073-4352
2073-4352
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7802e6940b5948c48bc203e3fb67dae7
source Publicly Available Content (ProQuest)
subjects defect engineering
germanium
hydrogen
molecular beam epitaxy
quantum dots
silicon
title In-Situ Annealing and Hydrogen Irradiation of Defect-Enhanced Germanium Quantum Dot Light Sources on Silicon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Situ%20Annealing%20and%20Hydrogen%20Irradiation%20of%20Defect-Enhanced%20Germanium%20Quantum%20Dot%20Light%20Sources%20on%20Silicon&rft.jtitle=Crystals%20(Basel)&rft.au=Spindlberger,%20Lukas&rft.date=2020-05-01&rft.volume=10&rft.issue=5&rft.spage=351&rft.pages=351-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst10050351&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_7802e6940b5948c48bc203e3fb67dae7%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-aa7d7e55b73b596447fa3772f3f2463c8cce8a67c2c6f50f4b84e9212806cd053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true