Loading…

Multi-Section Traffic Flow Prediction Based on MLR-LSTM Neural Network

As the aggravation of road congestion leads to frequent traffic crashes, it is necessary to relieve traffic pressure through traffic flow prediction. As well, the traffic flow of the target road section to be predicted is also closely related to the adjacent road sections. Therefore, in this paper,...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-10, Vol.22 (19), p.7517
Main Authors: Shi, Ruizhe, Du, Lijing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As the aggravation of road congestion leads to frequent traffic crashes, it is necessary to relieve traffic pressure through traffic flow prediction. As well, the traffic flow of the target road section to be predicted is also closely related to the adjacent road sections. Therefore, in this paper, a prediction method based on the combination of multiple linear regression and Long-Short-Term Memory (MLR-LSTM) is proposed, which uses the incomplete traffic flow data in the past period of time of the target prediction section and the continuous and complete traffic flow data in the past period of time of each adjacent section to jointly predict the traffic flow changes of the target section in a short time. The accurate prediction of future traffic flow changes can be solved based on the model supposed when the traffic flow data of the target road section is partially missing in the past period of time. The accuracy of the prediction results is the same as that of the current mainstream prediction results based on continuous and non-missing target link flow data. Meanwhile, there is a small-scale improvement when the data time interval is short enough. In the case of frequent maintenance of cameras in actual traffic sections, the proposed prediction method is more feasible and can be widely used.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22197517